[2] |
Xie Z B, Feng J C. KFCE:a dictionary generation algorithm for sparse representation. Signal Process, 2009, 89(10):2072
|
[2] |
Tuna G, Nefzi B, Conte G. Unmanned aerial vehicle-aided communications system for disaster recovery. J Network Comput Appl, 2014, 41:27
|
[3] |
Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53(12):4655
|
[3] |
García-Laencina P J, Rodríguez-Bermudez G, Roca-Dorda J. Exploring dimensionality reduction of EEG features in motor imagery task classification. Expert Syst Appl, 2014, 41(11):5285
|
[4] |
Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55(5):2230
|
[5] |
Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56(6):2346
|
[6] |
Velasco-Álvarez F, Ron-Angevin R, da Silva-Sauer L, et al. Audio-cued motor imagery-based brain-computer interface:navigation through virtual and real environments. Neurocomputing, 2013, 121:89
|
[6] |
Elad M, Yavneh I. A plurality of sparse representations is better than the sparsest one alone. IEEE Trans Inf Theory, 2009, 55(10):4701
|
[7] |
Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals:uncertainty relations and efficient recovery. IEEE Trans Signal Process, 2010, 58(6):3042
|
[7] |
Elnady A M, Zhang X, Xiao Z G, et al. A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform. Frontiers Human Neurosci, 2015, 9:168
|
[8] |
Kim B H, Kim M, Jo S. Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking. Comput Biol Med, 2014, 51:82
|
[8] |
Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing. IEEE Trans Inf Theory, 2010, 56(4):1982
|
[9] |
Zhang Z L, Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans Signal Process, 2013, 61(8):2009
|
[10] |
Fang J, Shen Y N, Li H B, et al. Pattern-coupled sparse bayesian learning for recovery of block-sparse signals. IEEE Trans Signal Process, 2015, 63(2):360
|
[10] |
Li W, He Q C, Fan X M, et al. Evaluation of driver fatigue on two channels of EEG data. Neurosci Lett, 2012, 506(2):235
|
[11] |
Wang Y K, Chen S A, Li C T. An EEG-based brain-computer interface for dual task driving detection. Neurocomputing, 2014, 129:85
|
[11] |
He L H, Carin L. Exploiting structure in wavelet-based bayesian compressive sensing. IEEE Trans Signal Process, 2009, 57(9):3488
|
[12] |
Garrigues P J, Olshausen B A. Learning horizontal connections in a sparse coding model of natural images//Advances in Neural Information Processing Systems (NIPS). Vancouver, 2007:1
|
[12] |
Stock M G, Akita M, Krehbiel P R, et al. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. J Geophysical Res Atmospheres, 2014, 119(6):3134
|
[13] |
Lliff K W. Maximum likelihood estimation of lift and drag from dynamic aircraft maneuvers. J Aircraft, 1977, 14(12):1175
|
[13] |
Dremeau A, Herzet C, Daudet L. Boltzmann machine and mean-field approximation for structured sparse decompositions. IEEE Trans Signal Process, 2012, 60(7):3425
|
[14] |
Peleg T, Eldar Y, Elad M. Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans Signal Process, 2012, 60(5):2286
|
[15] |
Chen C L P, Zhang C Y, Chen L, et al. Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Trans Fuzzy Systems, 2015, 23(6):2163"[1] Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor. IEEE Trans Rob, 2012, 28(1):90
|