<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

MMSE準則下基于玻爾茲曼機的快速重構算法

劉玲君 謝中華 馮久超 楊萃

劉玲君, 謝中華, 馮久超, 楊萃. MMSE準則下基于玻爾茲曼機的快速重構算法[J]. 工程科學學報, 2017, 39(8): 1254-1260. doi: 10.13374/j.issn2095-9389.2017.08.016
引用本文: 劉玲君, 謝中華, 馮久超, 楊萃. MMSE準則下基于玻爾茲曼機的快速重構算法[J]. 工程科學學報, 2017, 39(8): 1254-1260. doi: 10.13374/j.issn2095-9389.2017.08.016
LIU Ling-jun, XIE Zhong-hua, FENG Jiu-chao, YANG Cui. Fast recovery algorithm based on Boltzmann machine and MMSE criterion[J]. Chinese Journal of Engineering, 2017, 39(8): 1254-1260. doi: 10.13374/j.issn2095-9389.2017.08.016
Citation: LIU Ling-jun, XIE Zhong-hua, FENG Jiu-chao, YANG Cui. Fast recovery algorithm based on Boltzmann machine and MMSE criterion[J]. Chinese Journal of Engineering, 2017, 39(8): 1254-1260. doi: 10.13374/j.issn2095-9389.2017.08.016

MMSE準則下基于玻爾茲曼機的快速重構算法

doi: 10.13374/j.issn2095-9389.2017.08.016
基金項目: 

廣東省科技計劃資助項目(2017A020214011)

國家自然科學基金資助項目(61327005,61302120)

中央高校基本科研業務費資助項目(2017MS039)

詳細信息
  • 中圖分類號: TP391

Fast recovery algorithm based on Boltzmann machine and MMSE criterion

  • 摘要: 全連接的玻爾茲曼機模型可全面描述稀疏系數間統計依賴關系,但時間復雜度較高.為了提高基于玻爾茲曼機的貝葉斯匹配追蹤算法(BM-BMP)的重構速度和質量,本文提出一種改進算法.第一,將BM-BMP算法的最大后驗概率(MAP)估計評估值分解為上一次迭代的評估值與增量,使得每次迭代僅需計算增量,極大縮短了計算耗時.第二,利用顯著最大后驗概率估計值平均的方式,有效近似最小均方誤差(MMSE)估計,獲得了更小的重構誤差.實驗結果表明,本文算法比BM-BMP算法的運行時間平均縮短了73.66%,峰值信噪比(PSNR)值平均提高了0.57 dB.

     

  • [2] Xie Z B, Feng J C. KFCE:a dictionary generation algorithm for sparse representation. Signal Process, 2009, 89(10):2072
    [2] Tuna G, Nefzi B, Conte G. Unmanned aerial vehicle-aided communications system for disaster recovery. J Network Comput Appl, 2014, 41:27
    [3] Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53(12):4655
    [3] García-Laencina P J, Rodríguez-Bermudez G, Roca-Dorda J. Exploring dimensionality reduction of EEG features in motor imagery task classification. Expert Syst Appl, 2014, 41(11):5285
    [4] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55(5):2230
    [5] Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56(6):2346
    [6] Velasco-Álvarez F, Ron-Angevin R, da Silva-Sauer L, et al. Audio-cued motor imagery-based brain-computer interface:navigation through virtual and real environments. Neurocomputing, 2013, 121:89
    [6] Elad M, Yavneh I. A plurality of sparse representations is better than the sparsest one alone. IEEE Trans Inf Theory, 2009, 55(10):4701
    [7] Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals:uncertainty relations and efficient recovery. IEEE Trans Signal Process, 2010, 58(6):3042
    [7] Elnady A M, Zhang X, Xiao Z G, et al. A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform. Frontiers Human Neurosci, 2015, 9:168
    [8] Kim B H, Kim M, Jo S. Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking. Comput Biol Med, 2014, 51:82
    [8] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing. IEEE Trans Inf Theory, 2010, 56(4):1982
    [9] Zhang Z L, Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans Signal Process, 2013, 61(8):2009
    [10] Fang J, Shen Y N, Li H B, et al. Pattern-coupled sparse bayesian learning for recovery of block-sparse signals. IEEE Trans Signal Process, 2015, 63(2):360
    [10] Li W, He Q C, Fan X M, et al. Evaluation of driver fatigue on two channels of EEG data. Neurosci Lett, 2012, 506(2):235
    [11] Wang Y K, Chen S A, Li C T. An EEG-based brain-computer interface for dual task driving detection. Neurocomputing, 2014, 129:85
    [11] He L H, Carin L. Exploiting structure in wavelet-based bayesian compressive sensing. IEEE Trans Signal Process, 2009, 57(9):3488
    [12] Garrigues P J, Olshausen B A. Learning horizontal connections in a sparse coding model of natural images//Advances in Neural Information Processing Systems (NIPS). Vancouver, 2007:1
    [12] Stock M G, Akita M, Krehbiel P R, et al. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. J Geophysical Res Atmospheres, 2014, 119(6):3134
    [13] Lliff K W. Maximum likelihood estimation of lift and drag from dynamic aircraft maneuvers. J Aircraft, 1977, 14(12):1175
    [13] Dremeau A, Herzet C, Daudet L. Boltzmann machine and mean-field approximation for structured sparse decompositions. IEEE Trans Signal Process, 2012, 60(7):3425
    [14] Peleg T, Eldar Y, Elad M. Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans Signal Process, 2012, 60(5):2286
    [15] Chen C L P, Zhang C Y, Chen L, et al. Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Trans Fuzzy Systems, 2015, 23(6):2163"[1] Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor. IEEE Trans Rob, 2012, 28(1):90
  • 加載中
計量
  • 文章訪問數:  569
  • HTML全文瀏覽量:  284
  • PDF下載量:  10
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-09-12

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com