[1] |
Jin L Z, Wang S, Liu S C, et al. Development of a low oxygen generation rate chemical oxygen generator for emergency refuge spaces in underground mines. Combust Sci Technol, 2015, 187(8):1229
|
[2] |
Shafirovich E, Garcia A, Swamy A K N, et al. On feasibility of decreasing metal fuel content in chemical oxygen generators. Combust Flame, 2012, 159(1):420
|
[4] |
Graf J, Dunlap C, Haas J, et al. Development of a solid chlorate backup oxygen delivery system for the international space station//International Conference on Envrionmental Systems (ICES). Toulouse, 2000
|
[6] |
Littman J, Prince R N. Research on sodium chlorate candles for the storage and supply of oxygen for space exploration. NASA Special Publ, 1970, 234:291
|
[9] |
Liu J G, Jin L Z, Gao N, et al. Effect of forming technology on oxygen supply performance of oxygen candles in refuge spaces//3rd International Symposium on Mine Safety Science and Engineering. Montreal, 2016:308
|
[10] |
Wydeven T. Catalytic decomposition of sodium chlorate. J Catal, 1970, 19(2):162
|
[12] |
Shafirovich E, Mukasyan A S, Varma A, et al. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel. Combust Flame, 2002, 128(1-2):133
|
[13] |
Shafirovich E, Zhou C, Mukasyan A S, et al. Combustion fluctuations in low-exothermic condensed systems for emergency oxygen generation. Combust Flame, 2003, 135(4):557
|
[14] |
Shafirovich E, Zhou C J, Ekambaram S, et al. Catalytic effects of metals on thermal decomposition of sodium chlorate for emergency oxygen generators. Ind Eng Chem Res, 2007, 46(10):3073
|
[15] |
Machado M A, Rodriguez D A, Aly Y, et al. Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators. Combust Flame, 2014, 161(10):2708
|
[16] |
Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of non-oxide metal compounds on the thermal decomposition of sodium chlorate. Ind Eng Chem Res, 1993, 32(11):2863
|
[17] |
Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate. Thermochimical Acta, 1993, 228:147
|
[18] |
Phuoc T X, Chen R H. Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles. Combust Flame, 2012, 159(1):416
|
[19] |
Mohan S, Trunov M A, Dreizin E L. On possibility of vapor-phase combustion for fine aluminum particles. Combust Flame, 2009, 156(11):2213
|
[20] |
Huang Y, Risha G A, Yang V, et al. Effect of particle size on combustion of aluminum particle dust in air. Combust Flame, 2009, 156(1):5
|
[21] |
British Standards Institution. ISO 11358-1-2014 Plastics-Thermogravimetry (TG) of polymers-Part 1:General principles. Geneva, International Organization for Standardization, 2014
|
[22] |
Markowitz M M, Boryta D A, Stewart Jr H. The differential thermal analysis of perchlorates. VI. Transient perchlorate formation during the pyrolysis of the alkali metal chlorates. J Phys Chem, 1964, 68(8):2282
|
[23] |
Hu M, Chen Z H, Guo D B, et al. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol, 2015, 177:41
|
[24] |
Ceylan S, Kazan D. Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp. Bioresour Technol, 2015, 187:1
|
[25] |
Boon T H, Raheem A, Ghani W A W A K, et al. Thermogravimetric study of napier grass in inert and oxidative atmospheres conditions. J Phys Sci, 2017, 28(Suppl 1):155
|
[26] |
Rudloff W K, Freeman E S. Catalytic effect of metal oxides on thermal-decomposition reactions. I. The mechanism of the molten-phase thermal decomposition of potassium chlorate and of potassium chlorate in mixtures with potassium chloride and potassium perchlorate. J Phys Chem, 1969, 73(5):1209
|
[27] |
Zhang Y W, Yan K, Qiu K Z, et al. Catalyst for lithium perchlorate decomposition. J Propul Power, 2015, 31(5):1445
|