<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于小波包的開關電流電路故障診斷

張鎮 段哲民 龍英

張鎮, 段哲民, 龍英. 基于小波包的開關電流電路故障診斷[J]. 工程科學學報, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017
引用本文: 張鎮, 段哲民, 龍英. 基于小波包的開關電流電路故障診斷[J]. 工程科學學報, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017
ZHANG Zhen, DUAN Zhe-min, LONG Ying. Fault detection in switched current circuits based on preferred wavelet packet[J]. Chinese Journal of Engineering, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017
Citation: ZHANG Zhen, DUAN Zhe-min, LONG Ying. Fault detection in switched current circuits based on preferred wavelet packet[J]. Chinese Journal of Engineering, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017

基于小波包的開關電流電路故障診斷

doi: 10.13374/j.issn2095-9389.2017.07.017
基金項目: 

國家自然科學基金資助項目(61201108,61102035)

詳細信息
  • 中圖分類號: TH165.3

Fault detection in switched current circuits based on preferred wavelet packet

  • 摘要: 為提高開關電流電路故障診斷的精度,提出了一種基于小波包優選和優化BP神經網路的開關電流電路特征抽取與識別方法.首先對開關電流電路原始響應信號進行多層次的小波包分解,接著計算N層分解后的歸一化能量值,以特征偏離度作為評價選擇最優小波包基,構建最優故障特征向量,最后將提取的最優故障特征通過遺傳算法優化的BP神經網絡進行分類.該方法以實例電路進行驗證,結果表明所有的軟故障均得到了有效的分類,說明了該方法在開關電流電路故障診斷中的優越性.

     

  • [1] Toumazou C, Hughes J B, Battersby N C. Switched-Currents, an Analogue Technique for Digital Technology. London:Peter Peregrinus Ltd, 1993
    [3] Spence H. Automatic analog fault simulation//Proceedings of Auto Test Conference Test Technology and Commercialization. Dayton, 1996
    [4] Jantos P, Grzechca D, Rutkowski J. A global parametric faults diagnosis with the use of artificial neural networks//ECCTD 2009 European Conference on Circuit Theory and Design. Antalya, 2009:651
    [5] Tan Y H, Sun Y C, Yin X. Analog fault diagnosis using S-transform preprocessor and a QNN classifier. Measurement, 2013, 46(7):2174
    [6] Zhang A H, Chen C, Jiang B S. Analog circuit fault diagnosis based UCISVM. Neurocomputing, 2016, 173:1752
    [7] Aminian M, Aminian F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Trans Circuits Syst Ⅱ:Analog Digital Signal Process, 2000, 47(2):151
    [8] Aminian F, Aminian M, Collins H W. Analog fault diagnosis of actual circuits using neural networks. IEEE Trans Instrum Meas, 2002, 51(3):544
    [9] Peng M F, Tse C K, Shen M E, et al. Fault diagnosis of analog circuits using systematic tests based on data fusion. Circuits Syst Signal Process, 2013, 32(2):525
    [10] Sheikhan M, Sha'bani A A. PSO-optimized modular neural network trained by OWO-HWO algorithm for fault location in analog circuits. Neural Comput Appl, 2013, 23(2):519
    [11] Zhao D S, He Y Z. A new test points selection method for analog fault dictionary techniques. Analog Integr Circuits Signal Process, 2015, 82(2):435
    [12] Jiang Y Y, Wang Y R, Luo H. Fault diagnosis of analog circuit based on a second map SVDD. Analog Integr Circuits Signal Process, 2015, 85(3):395
    [13] Han H, Wang H J, Tian S L, et al. A new analog circuit fault diagnosis method based on improved Mahalanobis distance. J Electron Testing, 2013, 29(1):95
    [14] Guo J R, He Y G, Tang S X, et al. Switched-current circuits test using pseudo-random method. Analog Integr Circuits Signal Process, 2007, 52(1):47
    [15] Guo J R, Cai X H, He Y G. PRBS test signature analysis of switched current circuit//20091st International Conference on Information Science and Engineering (ICISE). Nanjing, 2009:627
    [16] Long Y, He Y G, Liu L, et al. Implicit functional testing of switched current filter based on fault signatures. Analog Integr Circuits Signal Process, 2012, 71(2):293
    [17] Guo J R, He Y G, Liu M R. Wavelet neural network approach for testing of switched-current circuits. J Electr Test, 2011, 27:611
    [18] Long Y, He Y G, Yuan L F. Fault dictionary based switched current circuit fault diagnosis using entropy as a preprocessor. Analog Integr Circuits Signal Process, 2011, 66(1):93
    [19] Zhang Z, Duan Z M, Long Y, et al. A new swarm-SVM-based fault diagnosis approach for switched current circuit by using kurtosis and entropy as a preprocessor. Analog Integr Circuits Signal Process, 2014, 81(1):289
  • 加載中
計量
  • 文章訪問數:  535
  • HTML全文瀏覽量:  183
  • PDF下載量:  10
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-12-13

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com