<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

旋轉機械設備狀態預警與維修優化

章立軍 榮銀龍 劉凱 張彬

章立軍, 榮銀龍, 劉凱, 張彬. 旋轉機械設備狀態預警與維修優化[J]. 工程科學學報, 2017, 39(7): 1094-1100. doi: 10.13374/j.issn2095-9389.2017.07.016
引用本文: 章立軍, 榮銀龍, 劉凱, 張彬. 旋轉機械設備狀態預警與維修優化[J]. 工程科學學報, 2017, 39(7): 1094-1100. doi: 10.13374/j.issn2095-9389.2017.07.016
ZHANG Li-jun, RONG Yin-long, LIU Kai, ZHANG Bin. State pre-warning and optimization for rotating-machinery maintenance[J]. Chinese Journal of Engineering, 2017, 39(7): 1094-1100. doi: 10.13374/j.issn2095-9389.2017.07.016
Citation: ZHANG Li-jun, RONG Yin-long, LIU Kai, ZHANG Bin. State pre-warning and optimization for rotating-machinery maintenance[J]. Chinese Journal of Engineering, 2017, 39(7): 1094-1100. doi: 10.13374/j.issn2095-9389.2017.07.016

旋轉機械設備狀態預警與維修優化

doi: 10.13374/j.issn2095-9389.2017.07.016
基金項目: 

國家自然科學基金資助項目(51005015)

國家重點研發計劃項目(2016YFF0203804)

中央高校基本科研業務費資助項目(FRF-TP-15-010A3)

詳細信息
  • 中圖分類號: TH165+.3

State pre-warning and optimization for rotating-machinery maintenance

  • 摘要: 旋轉機械設備的維修策略對于維護機械設備運行狀態,保障產品生產質量有著重要意義,并且直接影響企業經濟效益.頻繁維修雖可以保障設備狀態,但隨之會帶來高昂的維修成本;檢修周期過長雖然可以降低維修次數,減少維修成本,但是設備狀態卻難以保證.本文提出了一種基于峭度指標的故障預警方法以及基于模糊C均值方法的實時維修策略優化方法.通過監測峭度指標變化,可以成功捕捉機械設備的早期故障特征,再使用模糊C均值方法,評估設備狀態,將其結果視為設備運行可靠性指標,根據企業效益最優化的維修建議準則,對設備的維修策略做出實時建議.對某鋼廠的設備狀態監測數據分析驗證,結果表明,本文提出的基于實時維修策略優化方法的維修建議更加適用于現場設備的管理,節約了監測成本,使得企業效益更優.

     

  • [1] Jardine A K S, Lin D M, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process, 2006, 20(7):1483
    [2] Lei Y G, Han D, Lin J, et al. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech Syst Signal Process, 2013, 38(1):113
    [5] Cheng J S, Yu D J, Yang Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis. Mech Syst Signal Process, 2007, 21(2):668
    [6] Chan G K, Asgarpoor S. Optimum maintenance policy with Markov processes. Electr Power Syst Res, 2006, 76(6-7):452
    [7] Wang W. Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance. Proc Inst Mech Eng, Part O:J Risk Reliability, 2011, 225(2):185
    [8] Zhang S W, Zhou W X. Cost-based optimal maintenance decisions for corroding natural gas pipelines based on stochastic degradation models. Eng Struct, 2014, 74:74
    [9] Zhang W J, Wang W B. Cost modelling in maintenance strategy optimisation for infrastructure assets with limited data. Reliability Eng Syst Saf, 2014, 130:33
    [10] Wu F J, Wang T Y, Lee J. An online adaptive condition-based maintenance method for mechanical systems. Mech Syst Signal Process, 2010, 24(8):2985
    [11] Faillettaz J, Or D. Failure criterion for materials with spatially correlated mechanical properties. Phys Rev E, 2015, 91(3):032134
    [12] Moghaddass R, Rudin C. The latent state hazard model, with application to wind turbine reliability. Ann Appl Statistics, 2015, 9(4):1823
    [13] Stähli M, Sättele M, Huggel C, et al. Monitoring and prediction in early warning systems for rapid mass movements. Nat Hazards Earth Syst Sci, 2015, 15(4):905
    [17] Lee J. Measurement of machine performance degradation using a neural network model. Comput Ind, 1996, 30(3):193
  • 加載中
計量
  • 文章訪問數:  558
  • HTML全文瀏覽量:  209
  • PDF下載量:  9
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-07-19

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com