<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋁含量對TWIP鋼中夾雜物特征及AlN析出行為的影響

劉洪波 劉建華 沈少波 吳博威 丁浩 蘇曉峰

劉洪波, 劉建華, 沈少波, 吳博威, 丁浩, 蘇曉峰. 鋁含量對TWIP鋼中夾雜物特征及AlN析出行為的影響[J]. 工程科學學報, 2017, 39(7): 1008-1019. doi: 10.13374/j.issn2095-9389.2017.07.005
引用本文: 劉洪波, 劉建華, 沈少波, 吳博威, 丁浩, 蘇曉峰. 鋁含量對TWIP鋼中夾雜物特征及AlN析出行為的影響[J]. 工程科學學報, 2017, 39(7): 1008-1019. doi: 10.13374/j.issn2095-9389.2017.07.005
LIU Hong-bo, LIU Jian-hua, SHEN Shao-bo, WU Bo-wei, DING Hao, SU Xiao-feng. Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1008-1019. doi: 10.13374/j.issn2095-9389.2017.07.005
Citation: LIU Hong-bo, LIU Jian-hua, SHEN Shao-bo, WU Bo-wei, DING Hao, SU Xiao-feng. Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1008-1019. doi: 10.13374/j.issn2095-9389.2017.07.005

鋁含量對TWIP鋼中夾雜物特征及AlN析出行為的影響

doi: 10.13374/j.issn2095-9389.2017.07.005
基金項目: 

國家自然科學基金資助項目(51574022)

詳細信息
  • 中圖分類號: TF704.7

Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel

  • 摘要: 采用掃描電鏡、X射線能譜儀以及掃描電鏡配置的夾雜物自動掃描統計軟件(INCAFeature)表征了Fe-Mn-C(-Al)系TWIP鋼中夾雜物的成分、形貌和數量,考察了Al質量分數在0.002%~1.590%的四種TWIP鋼中夾雜物的特征和Al含量對AlN析出行為的影響.并在此基礎上,采用了適合TWIP鋼中高錳高鋁特點的熱力學參數對AlN夾雜物進行了系統的熱力學分析.研究表明,在含有相似N質量分數(0.0078%~0.0100%)的TWIP鋼中,當鋼中Al質量分數升高至0.75%時,AlN夾雜物開始在鋼中析出,并在MnS(Se)-Al2 O3上局部析出形成MnS(Se)-Al2 O3-AlN復合夾雜;當Al質量分數升高至1.07%時,熱力學計算表明AlN已經可以在TWIP鋼液相中形成,經不斷長大后在MnS(Se)夾雜物表面局部析出形成MnS(Se)-AlN復合夾雜物;在Al質量分數為1.59%的TWIP鋼中,AlN的平衡析出溫度比其液相線溫度高出42℃,在液相中形成的AlN可以作為異質核心,MnS(Se)夾雜在其表面包裹形成MnS(Se)-AlN復合夾雜物.另外,在Fe-18.21% Mn-0.64% C-1.59% Al體系的TWIP鋼中,AlN在液相中析出所需的最低氮的質量分數僅為0.0043%.因此,在TWIP鋼的冶煉過程中,應盡可能的降低鋼中的氮含量,避免生成過量的AlN夾雜.

     

  • [1] Grässel O, Kruger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16(10-11):1391
    [2] Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6 C steel having the reduced specific weight. Mater Sci Eng A, 2011, 528(15):5196
    [3] Li D Z, Wei Y H, Xu B S, et al. Development in fundamental research in TWIP steel used in automobile industry. Ironmaking Steelmaking, 2011, 38(7):540
    [4] Li P, Li J, Meng Q, et al. Effect of heating rate on nucleation and growth of austenite in cold rolled dual phase steel. Ironmaking Steelmaking, 2015, 42(2):81
    [5] Liu H B, Liu J H, Michelic S, et al. Characteristics of AlN inclusions in low carbon Fe-Mn-Si-Al TWIP steel produced by AOD-ESR method. Ironmaking Steelmaking, 2016, 43(3):171
    [6] Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Mater, 2010, 58(7):2464
    [8] Gigacher G, Krieger W, Scheller P R, et al. Non-metallic inclusions in high-manganese-alloy steels. Steel Res Int, 2005, 76(9):644
    [9] Park J H, Kim D J, Min D J. Characterization of non-metallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall Mater Trans A, 2012, 43(7):2316
    [10] Xin X L, Yang J, Wang Y N, et al. Effects of Al content on non-metallic inclusion evolution in Fe-16Mn-xAl-0.6C high Mn TWIP steel. Ironmaking Steelmaking, 2016, 43(3):234
    [11] Paek M K, Jang J M, Jiang M, et al. Thermodynamics of AlN formation in high manganese-aluminum alloyed liquid steels. ISIJ Int, 2013, 53(6):973
    [12] Paek M K, Jang J M, Kang H J, et al. Reassessment of AlN(s)=Al + N equilibration in liquid iron. ISIJ Int, 2013, 53(3):535
    [13] Yin H B. Inclusion characterization and thermodynamics for high Al advanced high-strength steels. Iron Steel Technol, 2006, 3(6):64
    [14] Kaushik P, Lowry M, Yin H, et al. Inclusion characterization for clean steelmaking and quality control. Ironmaking Steelmaking, 2012, 39(4):284
    [15] Liu H B, Liu J H, Michelic S, et al. Characterization and analysis of non-metallic inclusions in low carbon Fe-Mn-Si-Al TWIP steels. Steel Res Int, 2016, 87(12):1723
    [16] Vedani M, Dellasega D, Mannuccii A. Characterization of grainboundary precipitates after hot-ductility tests of microalloyed steels. ISIJ Int, 2009, 49(3):446
    [17] Kang S E, Banerjee J R, Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Mater Sci Tech, 2012, 28(5):589
    [18] Kang S E, Tuling A, Banerjee J R, et al. Hot ductility of TWIP steels. Mater Sci Technol, 2011, 27(1):95
    [19] Lewis I E, Scaife P H, Swinkels D A J. Electrolytic manganese metal from chloride electrolytes. Ⅱ. Effect of additives. J Appl Electrochem, 1976, 6(5):453
    [20] Sun Y, Tian X K, He B B, et al. Studies of the reduction mechanism of selenium dioxide and its impact on the microstructure of manganese electrodeposit. Electrochim Acta, 2011, 56(24):8305
    [21] Satoh N, Taniguchi T, Mishima S, et al. Prediction of nonmetallic inclusion formation in Fe-40mass% Ni-5mass% Cr alloy production process. Testu-to-Hagané, 2009, 95(12):827
    [22] Wada H, Pehlke R D. Nitrogen solubility and aluminum nitride precipitation in liquid iron, Fe-Cr, Fe-Cr-Ni, and Fe-Cr-Ni-Mo alloys. Metall Trans B, 1978, 9(3):441
    [23] Kim W Y, Kang J G, Park C H. Thermodynamics of aluminum, nitrogen and AlN formation in liquid iron. ISIJ Int, 2007, 47(7):945
    [25] The Japan Society for the Promotion of Science. Steelmaking Data Sourcebook. New York:Gordon and Breach Science Publications, 1988
    [26] Paek M K, Jang J M, Do K H, et al. Nitrogen solubility in high manganese-aluminum alloyed liquid steels. Met Mater Int, 2013, 19(5):1077
    [27] Kim D H, Jung M S, Nam H, et al. Thermodynamic relation between silicon and aluminum in liquid iron. Metall Mater Trans B, 2012, 43(5):1106
    [28] Shin J H, Lee J, Min D J, et al. Solubility of nitrogen in high manganese steel (HMnS) melts:interaction parameter between Mn and N. Metall Mater Trans B, 2011, 42(6):1081
    [29] Jang J M, Seo S H, Kim Y D, et al. Effect of carbon on nitrogen solubility and AlN formation in high Al alloyed liquid steels. ISIJ Int, 2014, 54(7):1578
    [30] Jang J M, Seo S H, Jiang M, et al. Nitrogen solubility in liquid Fe-C alloys. ISIJ Int, 2014, 54(1):32
    [31] Croft N H, Entwisle A R, Davies G J. Origins of dendritic AlN precipitates in aluminum-killed-steel castings. Met Technol, 1983, 10(1):125
    [32] Shi C B, Chen X C, Guo H J. Characteristics of inclusions in high-Al steel during electroslag remelting process. Int J Miner Metall Mater, 2012, 19(4):295
    [33] Turkdogan E T. Fundamental of Steelmaking. Cambridge:The University Press, 1996
    [34] Goto H, Miyazawa K, Yamada W, et al. Effect of cooling rate on composition of oxides precipitated during solidification of steel. ISIJ Int, 1995, 35(6):708
  • 加載中
計量
  • 文章訪問數:  1028
  • HTML全文瀏覽量:  361
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-07-27

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com