<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

圖案化氧化鋅在能源器件中的應用

司浩楠 康卓 陳翔 白智明 張隨財 張躍

司浩楠, 康卓, 陳翔, 白智明, 張隨財, 張躍. 圖案化氧化鋅在能源器件中的應用[J]. 工程科學學報, 2017, 39(7): 973-980. doi: 10.13374/j.issn2095-9389.2017.07.001
引用本文: 司浩楠, 康卓, 陳翔, 白智明, 張隨財, 張躍. 圖案化氧化鋅在能源器件中的應用[J]. 工程科學學報, 2017, 39(7): 973-980. doi: 10.13374/j.issn2095-9389.2017.07.001
SI Hao-nan, KANG Zhuo, CHEN Xiang, BAI Zhi-ming, ZHANG Sui-cai, ZHANG Yue. Application of patterned ZnO in energy devices[J]. Chinese Journal of Engineering, 2017, 39(7): 973-980. doi: 10.13374/j.issn2095-9389.2017.07.001
Citation: SI Hao-nan, KANG Zhuo, CHEN Xiang, BAI Zhi-ming, ZHANG Sui-cai, ZHANG Yue. Application of patterned ZnO in energy devices[J]. Chinese Journal of Engineering, 2017, 39(7): 973-980. doi: 10.13374/j.issn2095-9389.2017.07.001

圖案化氧化鋅在能源器件中的應用

doi: 10.13374/j.issn2095-9389.2017.07.001
基金項目: 

北京市科學技術委員會資助項目(Z151100003315021)

國家重點研究發展計劃資助項目(2013CB932602)

中國博士后科學基金資助項目

高等學校引進人才計劃資助項目(B14003)

國家自然科學基金資助項目(51527802,51232001,51372020和51602020)

詳細信息
  • 中圖分類號: TG142.71

Application of patterned ZnO in energy devices

  • 摘要: ZnO作為一種典型的直接帶隙寬禁帶半導體材料極具開發潛力和應用價值.隨著圖案化技術的不斷發展優化,ZnO納米棒陣列的精確可控制備逐步得到實現.本文綜述了利用激光限域技術制備圖案化ZnO納米棒陣列的方法,并詳述了其在太陽能電池和光電化學電池中的應用.激光干涉法制備的ZnO納米陣列比表面積大且具有直線傳輸的優勢,運用于光伏器件和電化學電池中增加了光吸收同時利于載流子傳輸,器件性能顯著提高.圖案化ZnO納米棒陣列具有可控的三維空間結構,廣泛應用關于各類能源器件中,具有極大的研究和應用價值.

     

  • [1] Yang Y, Guo W, Wang X Q, et al. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett, 2012, 12(4):1919
    [2] Zhang Y, Yan X Q, Yang Y, et al. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv Mater, 2012, 24(34):4647
    [3] Zhang Y, Yang Y, Gu Y S, et al. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy, 2015, 14:30
    [4] Si H N, Liao Q L, Zhang Z, et al. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy, 2016, 22:223
    [5] Liu Y C, Gu Y S, Yan X Q, et al. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res, 2015, 8(9):2891
    [6] Lu S N, Liao Q L, Qi J J, et al. The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res, 2016, 9(2):372
    [7] Zhang Z, Liao Q L, Yan X Q, et al. Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res, 2014, 7(2):190
    [8] Liao Q L, Zhang Z, Zhang X H, et al. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res, 2014, 7(6):917
    [9] Yang Y, Lin L, Zhang Y, et al. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano, 2012, 6(11):10378
    [10] Liao X Q, Yan X Q, Lin P, et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. ACS Appl Mater Interfaces, 2015, 7(3):1602
    [11] Willander M, Nur O, Zhao Q X, et al. Zinc oxide nanorod based photonic devices:recent progress in growth, light emitting diodes and lasers. Nanotechnology, 2009, 20(33):332001
    [12] Zhang X M, Lu M Y, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater, 2009, 21(27):2767
    [13] Liao Q L, Liang M Y, Zhang Z, et al. Strain-modulation and service behavior of Au-MgO-ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res, 2015, 8(12):3772
    [14] Shen Y W, Yan X Q, Bai Z M, et al. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Adv, 2015, 5(8):5976
    [15] Zhang G J, Liao Q L, Qin Z, et al. Fast sensitization process of ZnO-nanorod-array electrodes by electrophoresis for dye-sensitized solar cells. RSC Adv, 2014, 4(74):39332
    [16] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4(6):455
    [17] Qi J J, Liu W, Biswas C, et al. Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes. Opt Commun, 2015, 349:198
    [18] Kang Z, Yan X Q, Wang Y F, et al. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res, 2016, 9(2):344
    [19] Kang Z, Gu Y S, Yan X Q, et al. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron, 2015, 64:499
    [20] Kang Z, Yan X Q, Wang Y F, et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and selfpowered biosensing application. Sci Rep, 2015, 5:7882
    [21] Zhang Y, Kang Z, Yan X Q, et al. ZnO nanostructures in enzyme biosensors. Sci China Mater, 2015, 58(1):60
    [22] Zhao K, Yan X Q, Gu Y S, et al. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array Heterostructure. Small, 2016, 12(2):245
    [24] Tian Y, Chen H Q, Zhu X L, et al. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H 2-decomposed GaN epilayer. Front Optoelectron, 2013, 6(4):440
    [25] Cheng C, Lei M, Feng L, et al. High-quality ZnO nanowire arrays directly fabricated from photoresists. ACS Nano, 2009, 3(1):53
    [26] Lee S H, Parish C M, Xu J. Anisotropic epitaxial ZnO/CdO core/shell heterostructure nanorods. Nanoscale Res Lett, 2012, 7:626
    [27] Lin M S, Chen C C, Wang W C, et al. Fabrication of the selective-growth ZnO nanorods with a hole-array pattern on a p-type GaN:Mg layer through a chemical bath deposition process. Thin Solid Films, 2010, 518(24):7398
    [28] Kim S B, Lee W W, Yi J, et al. Simple, large-scale patterning of hydrophobic ZnO nanorod arrays. ACS Appl Mater Interfaces, 2012, 4(8):3910
    [29] Dong J J, Zhang X W, Yin Z G, et al. Controllable growth of highly ordered ZnO nanorod arrays via inverted self-assembled monolayer template. ACS Appl Mater Interfaces, 2011, 3(11):4388
    [30] Li C, Hong G S, Wang P W, et al. Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem Mater, 2009, 21(5):891
    [31] Zeng H B, Xu X J, Bando Y, et al. Template deformation-tailored ZnO nanorod/nanowire arrays:full growth control and optimization of field-emission. Adv Funct Mater, 2009, 19(19):3165
    [32] Lee W W, Kim S B, Yi J, et al. Surface polarity-dependent cathodoluminescence in hydrothermally grown ZnO hexagonal rods. J Phys Chem C, 2012, 116(1):456
    [33] Zhang D B, Wang S J, Cheng K, et al. Controllable fabrication of patterned ZnO nanorod arrays:investigations into the impacts on their morphology. ACS Appl Mater Interfaces, 2012, 4(6):2969
    [34] Xu S, Wei Y G, Kirkham M, et al. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J Am Chem Soc, 2008, 130(45):14958
    [35] Kim Y J, Yoo H, Lee C H, et al. Position-and morphology-controlled ZnO nanostructures grown on graphene layers. Adv Mater, 2012, 24(41):5565
    [36] Miyake M, Chen Y C, Braun P V, et al. Fabrication of three-dimensional photonic crystals using multibeam interference lithography and electrodeposition. Adv Mater, 2009, 21(29):3012
    [37] Kim K S, Jeong H, Jeong M S, et al. Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv Funct Mater, 2010, 20(18):3055
    [38] Yuan D J, Guo R, Wei Y G, et al. Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation. Adv Funct Mater, 2010, 20(20):3484
    [39] Wei Y G, Wu W Z, Guo R, et al. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett, 2010, 10(9):3414
    [40] Chen X, Yan X Q, Bai Z M, et al. Facile fabrication of largescale patterned ZnO nanorod arrays with tunable arrangement, period and morphology. Cryst Eng Comm, 2013, 15:8022
    [41] Chen X, Yan X Q, Bai Z M, et al. High-throughput fabrication of large-scale highly ordered ZnO nanorod arrays via three-beam interference lithography. Cryst Eng Comm, 2013, 15:8416
    [42] Kim D J, Koh J K, Kim B, et al. Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells. Angew Chem Int Edit, 2012, 51(28):6864
    [43] Kim K S, Song H, Nam S H, et al. Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells. Adv Mater, 2012, 24(6):792
    [44] Chen X, Bai Z M, Yan X Q, et al. Design of efficient dye-sensitized solar cells with patterned ZnO-ZnS core-shell nanowire array photoanodes. Nanoscale, 2014, 6(9):4691
    [45] Mariani G, Wang Y, Wong P S, et al. Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering. Nano Lett, 2012, 12(7):3581
    [46] Kim D R, Lee C H, Weisse J M, et al. Shrinking and growing:grain boundary density reduction for efficient polysilicon thin-film solar cells. Nano Lett, 2012, 12(12):6485
    [47] Chen X, Lin P, Yan X Q, et al. Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. ACS Appl Mater Interfaces, 2015, 7(5):3216
    [48] Bai Z M, Yan X Q, Kang Z, et al. Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy, 2015, 14:392
    [49] Hu Y P, Yan X Q, Gu Y S, et al. Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl Surf Sci, 2015, 339:122
    [50] Bai Z M, Zhang Y H. CdS nanoparticles sensitized large-scale patterned ZnO nanowire arrays for enhanced solar water splitting. J Solid State Electrochem, 2016, 20(12):3499
    [51] Kang J J, Dang V Q, Li H J, et al. Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion. Nanotechnology, 2017, 28(4):045401
    [52] Bai Z M, Yan X Q, Li Y, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv Energy Mater, 2015, 6(3):1501459
  • 加載中
計量
  • 文章訪問數:  665
  • HTML全文瀏覽量:  214
  • PDF下載量:  16
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-12-08

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com