Effects of precipitates and texture on the anisotropy of high-strength Cu-Ni-Si alloy sheets
-
摘要: 利用利用X射線衍射、電子背散射衍射和透射電子顯微鏡等手段研究了Cu-Ni-Si系合金在不同固溶溫度下第二相與織構對其平面各向異性的影響.結果表明:隨固溶溫度的升高,合金強度和伸長率均出現先升高后降低的趨勢,且存在明顯的各向異性;800℃固溶時,Cu'和S'為主織構,部分形變晶粒誘發少量Brass、Goss和{011}〈511〉取向的形成,使得合金各向異性減弱;高溫固溶時(≥ 850℃),晶粒發生完全再結晶,Cu'和S'織構強度顯著增加,Brass等織構減弱甚至消失,各向異性增強;850℃固溶時效后形成δ-Ni2Si析出相,并與基體滿足[001]Cu//[110]δ,(010)Cu//(001)δ位向關系,溫度進一步增加,第二相析出體積分數降低,有利于改善材料的各向異性.Abstract: The effects of texture and precipitates on the plane anisotropy of Cu-Ni-Si alloy under different solid-solution temperature conditions were investigated by X-ray diffraction, electron backscattered diffraction, and transmission electron microscopy. The results show that strength and elongation first increase and then decrease with increasing solid-solution temperature, exhibiting apparently anisotropy. After 800℃ solid solution, the Cu' and S' are mainly texture and the alloy has weak anisotropic properties, which correlates with the coexistence of Brass, Goss, and {011}〈511〉orientation owing to deformed grains. Complete recrystallization can be obtained at high temperature solution (≥ 850℃), the Cu' and S' texture intensity increases, whereas the Brass texture weakens and disappears and the anisotropy increases. δ-Ni2Si precipitation is observed after 850℃ solution and subsequent aging, and the crystal orientation between the matrix and precipitates is [001]Cu//[110]δ and (010)Cu//(001)δ. The fraction of nanosize precipitates decreases significantly with increasing temperature and this improves the anisotropy.
-
Key words:
- copper-nickel-silicon /
- solid solution /
- texture /
- precipitates /
- anisotropy
-
參考文獻
[1] Lei Q, Li Z, Xiao T, et al. A new ultrahigh strength Cu-Ni-Si alloy. Intermetallics, 2013, 42:77 [2] Sun Z, Laitem C, Vincent A. Dynamic embrittlement during fatigue of a Cu-Ni-Si alloy. Mat Sci Eng A, 2011, 528(19):6334 [3] Goto M, Han S Z, Lim S H, et al. Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu-Ni-Si alloy. Int J Fatigue, 2016, 87:15 [4] Kaneko H, Eguchi T. Influence of texture on bendability of Cu-Ni-Si alloys. Mater Trans, 2012, 53(11):1847 [8] Jata K V, Hopkins A K, Rioja R J. The anisotropy and texture of Al-Li alloys. Mat Sci Forum, 1996, 217:647 [9] Yan H L, Zhao X, Jia N, et al. Influence of shear banding on the formation of Brass-type textures in polycrystalline fcc metals with low stacking fault energy. J Mater Sci Technol, 2014, 30(4):408 [10] Paul H, Drive J H, Maurice C, et al. Shear band microtexture formation in twinned face centred cubic single crystals. Mat Sci Eng A, 2003, 359(1):178 [11] Han S, Sohn K, Kim C, et al. Tensile anisotropy in Cu-Ni-Mn-Sn-Al alloys. Metall Mater Trans A, 2004, 35(2):465 [14] Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging. J Alloys Compd, 2014, 614:189 [15] Fujiwara H, Sato T, Kamio A. Effect of alloy composition on precipitation behavior in Cu-Ni-Si alloys. J Jpn Inst Met (Jpn), 1998, 62(4):301 [18] Hu T, Chen J H, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys. Acta Mater, 2013, 61(4):1210 -

計量
- 文章訪問數: 684
- HTML全文瀏覽量: 211
- PDF下載量: 20
- 被引次數: 0