<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

爆轟波三波點擦除煙跡表面積碳機制

趙煥娟 John H. S. Lee 張英華 嚴屹然

趙煥娟, John H. S. Lee, 張英華, 嚴屹然. 爆轟波三波點擦除煙跡表面積碳機制[J]. 工程科學學報, 2017, 39(3): 335-341. doi: 10.13374/j.issn2095-9389.2017.03.003
引用本文: 趙煥娟, John H. S. Lee, 張英華, 嚴屹然. 爆轟波三波點擦除煙跡表面積碳機制[J]. 工程科學學報, 2017, 39(3): 335-341. doi: 10.13374/j.issn2095-9389.2017.03.003
ZHAO Huan-juan, John H. S. LEE, ZHANG Ying-hua, YAN Yi-ran. Precise mechanism of triple point passage removing soot on soot-coated surface[J]. Chinese Journal of Engineering, 2017, 39(3): 335-341. doi: 10.13374/j.issn2095-9389.2017.03.003
Citation: ZHAO Huan-juan, John H. S. LEE, ZHANG Ying-hua, YAN Yi-ran. Precise mechanism of triple point passage removing soot on soot-coated surface[J]. Chinese Journal of Engineering, 2017, 39(3): 335-341. doi: 10.13374/j.issn2095-9389.2017.03.003

爆轟波三波點擦除煙跡表面積碳機制

doi: 10.13374/j.issn2095-9389.2017.03.003
基金項目: 

國家自然科學基金資助項目(E041003);中央高校基本科研業務費專項資金資助項目(FRF-TP-15-105A1);中國博士后科學基金資助項目(2015M580049)

詳細信息
  • 中圖分類號: TD77+4;O381

Precise mechanism of triple point passage removing soot on soot-coated surface

  • 摘要: 為理解三波點在壁面及端面積碳留下記錄的確切機制,推動對螺旋爆轟內部結構的研究,采用端面煙熏玻璃與內壁煙膜結合的實驗方法記錄胞格結構,并得到不穩定、較穩定及穩定預混氣的側壁及端面爆轟記錄.2H2+O2+3Ar給出了清晰精細的端面結果,其單頭螺旋結果表明相對于結果近似的側壁結果,內部螺旋結構并非固定.進而從附著碳粒的粒度尺寸分析出碳跡附著原理并結合五種預混氣的反應特性,確定鍵能足以克服碳跡吸附在表面的力時才能擦除煙跡.另外預混氣中的碳分子也會導致煙跡堆積而影響端面結果,反射激波的強度也影響記錄的清晰度.最終確定煙跡擦除機制受預混氣影響,應針對預混氣選用表面粗糙度載體和積碳顆粒尺寸,并給出了記錄爆轟結構的方法.

     

  • [2] Voitsekhovskii B V. Stationary detonation. Dokl USSR Acad Sci, 1959, 129(6):1254
    [3] Bykowski F A, Mitrofanov V V, Vedernikov E F. Continuous detonation combustion of fuel-air mixtures. Combust Explo Shock Waves, 1997, 33(3):344
    [4] Bykovskii F A, Zhdan S A, Verdernikov E F. Continuous spin detonation in ducted annular combustors:2. Combustor with an expanding annular channel. Combust Explo Shock Waves, 2008, 44(3):330
    [5] Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogen oxygen mixture in flow-type combustors. Combust Explo Shock Waves, 2009, 45(5):716
    [6] Wang Y H, Wang J P. Coexistence of detonation with deflagration in rotating detonation engines. Int J Hydrogen Energy, 2016, 41(32):14302
    [7] Yang C L, Wu X S, Ma H, et al. Experimental research on initiation characteristics of a rotating detonation engine. Exp Therm Fluid Sci, 2016, 71:154
    [8] Daniau E, Falempin F, Getin N, et al. Design of a continuous detonation wave engine for space application//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. California, 2006:4794
    [10] Wu Y W, Lee J H S. Stability of spinning detonation waves. Combust Flame, 2015, 162(6):2660
    [11] Mazaheri K, Mahmoudi Y, Sabzpooshani M, et al. Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls. Combust Flame, 2015, 162(6):2638
    [12] Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19(1):1
    [13] Zhdan S A, Bykovskii F A, Vedernikov E F. Mathmatical modeling of a rotating detonation wave in a hydrogen-oxygen mixture. Combust Explos Shock Waves, 2007, 43(4):449
    [14] Pan Z H, Fan B C, Zhang X D, et al. Wavelet pattern and selfsustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust Flame, 2011, 158(11):2220
    [15] Trotsyuk A V, Fomin P A, Vasil'ev A A. Numerical study of cellular detonation structures of methane mixtures. J Loss Prev Proc Ind, 2015, 36:394
    [16] Lee J H S. The Detonation Phenomenon. Cambridge:Cambridge University Press, 2008
    [19] Zhang B, Mehrjoo N, Ng H D, et al. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution. Combust Flame, 2014, 161(5):1390
    [26] Wu Y, Chri Stensen K T. Population trends of spanwise vortices in wall turbulence. J Fluid Mech, 2006, 568:55
    [27] Head M R, Bandyopadhyay P. New aspects of turbulent boundary-layer structure. J Fluid Mech, 1981, 107:297
    [29] Zhao H J, Lee J H S, Lee J L, et al. Quantitative comparison of cellular patterns of stable and unstable mixtures. Shock Waves, 2016, 26(5):621
  • 加載中
計量
  • 文章訪問數:  761
  • HTML全文瀏覽量:  227
  • PDF下載量:  13
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-05-16

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com