<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
XI Shuang, CHENG Ximing, GAO Xingwei, LIU Huilong. Preparation and electrochemical properties of manganese dioxide flexible electrodes for zinc-ion batteries[J]. Chinese Journal of Engineering, 2024, 46(11): 2036-2045. DOI: 10.13374/j.issn2095-9389.2024.01.22.003
Citation: XI Shuang, CHENG Ximing, GAO Xingwei, LIU Huilong. Preparation and electrochemical properties of manganese dioxide flexible electrodes for zinc-ion batteries[J]. Chinese Journal of Engineering, 2024, 46(11): 2036-2045. DOI: 10.13374/j.issn2095-9389.2024.01.22.003

Preparation and electrochemical properties of manganese dioxide flexible electrodes for zinc-ion batteries

  • Manganese dioxide (MnO2), a commonly used cathode material for zinc-ion batteries (ZIBs), has attracted considerable attention owing to its abundant reserves in nature, safety, and high theoretical capacity. One of the key challenges in the preparation of high-performance zinc-ion batteries is the construction of a cathode with a stable microstructure. In this study, a flexible and conductive carbon cloth (CC) was chosen as the substrate onto which manganese dioxide (MnO2) was deposited through either reductive deposition or electrochemical deposition methods to form a carbon cloth@ manganese dioxide (CC@MnO2) cathode. For the reductive deposition method, a precursor solution of KMnO4 and H2SO4 was used, and various concentrations were adopted to synthesize the CC@MnO2 cathode. The synthesized electrode is referred to as the CC@MnO2-reductive deposition cathode. Specifically, KMnO4 solutions with concentrations of 0.25, 0.40, and 0.55 mol·L?1 were mixed with H2SO4 at concentrations of 0.20 mol·L?1 and 0.50 mol·L?1. For the electrochemical deposition method, MnO2 nanoparticles were decorated on CC using a three-electrode system under the potentiostatic mode at a potential of 1.1 V for 1500 s. A depositing electrolyte consisting of 0.1 mol·L?1 MnSO4 + 0.1 mol·L?1 Na2SO4 was used. The synthesized electrode is referred to as the CC@MnO2-electrochemical deposition cathode. The cathodes synthesized under different parameters were comparatively analyzed via scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron microscopy to explore their morphology and microstructure. Furthermore, the prepared CC@MnO2 cathodes were assembled into button-type zinc-ion batteries, and their electrochemical properties, charging/discharging performance, and cycling stability were evaluated. The test results showed that the Zn//CC@MnO2 cells based on the reductive deposition method with a 0.40 mol·L?1 KMnO4 + 0.50 mol·L?1 H2SO4 mixed solution delivered optimal zinc storage performance (providing a discharge-specific capacity of up to 291 mA·h·g?1 at a current density of 0.1 A·g?1), energy density of 293.3 W·h·kg–1), and cycling stability with a capacity retention of 90.48% after 1000 cycles at a current density of 1 A·g?1 and Coulomb efficiency of 99.87%. The superior electrochemical performance of the CC@MnO2-RD cathode compared with that of the CC@MnO2-ED cathode is attributable to the improved structural stability and uniformity of the former. In addition, a reversible two-step insertion storage mechanism involving H+ and Zn2+ in the CC@MnO2 cathode for ZIBs was verified through ex-situ X-ray diffraction and scanning electron microscopy measurements at different charging/discharging states. This paper highlights the optimized preparation process of CC@MnO2 electrodes based on the reductive deposition method, demonstrating advantages such as low cost and ease of fabrication. These findings can serve as a reference for developing high-performance zinc-ion batteries.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com