<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

數據驅動的文獻輔助管線鋼產線落錘撕裂韌性內稟特征關聯

商春磊 王傳軍 劉文月 朱德鑫 汪水澤 董林碩 吳桂林 高軍恒 趙海濤 張朝磊 吳宏輝

商春磊, 王傳軍, 劉文月, 朱德鑫, 汪水澤, 董林碩, 吳桂林, 高軍恒, 趙海濤, 張朝磊, 吳宏輝. 數據驅動的文獻輔助管線鋼產線落錘撕裂韌性內稟特征關聯[J]. 工程科學學報, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001
引用本文: 商春磊, 王傳軍, 劉文月, 朱德鑫, 汪水澤, 董林碩, 吳桂林, 高軍恒, 趙海濤, 張朝磊, 吳宏輝. 數據驅動的文獻輔助管線鋼產線落錘撕裂韌性內稟特征關聯[J]. 工程科學學報, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001
SHANG Chun-lei, WANG Chuan-jun, LIU Wen-yue, ZHU De-xin, WANG Shui-ze, DONG Lin-shuo, WU Gui-lin, GAO Jun-heng, ZHAO Hai-tao, ZHANG Chao-lei, WU Hong-hui. Prediction of the drop hammer-derived tear toughness of pipeline steel production lines using literature data and production line data[J]. Chinese Journal of Engineering, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001
Citation: SHANG Chun-lei, WANG Chuan-jun, LIU Wen-yue, ZHU De-xin, WANG Shui-ze, DONG Lin-shuo, WU Gui-lin, GAO Jun-heng, ZHAO Hai-tao, ZHANG Chao-lei, WU Hong-hui. Prediction of the drop hammer-derived tear toughness of pipeline steel production lines using literature data and production line data[J]. Chinese Journal of Engineering, 2023, 45(8): 1390-1399. doi: 10.13374/j.issn2095-9389.2022.12.19.001

數據驅動的文獻輔助管線鋼產線落錘撕裂韌性內稟特征關聯

doi: 10.13374/j.issn2095-9389.2022.12.19.001
基金項目: 國家自然科學基金面上資助項目(52071023)
詳細信息
    通訊作者:

    劉文月,E-mail: liuwenyue@ansteel.com.cn

    高軍恒,E-mail: junhenggao@ustb.edu.cn

  • 中圖分類號: TG142

Prediction of the drop hammer-derived tear toughness of pipeline steel production lines using literature data and production line data

More Information
  • 摘要: 管道運輸是當前長距離輸送石油、天然氣等能源最經濟的方式之一,具有優異的低溫韌性是保證管線鋼安全運輸的重要特征。落錘撕裂試驗(Drop weight tear testing,DWTT)是衡量管線鋼低溫韌性的最有效的方法。在目前的工作中,根據鋼廠提供的產線數據集和文獻收集的管線鋼數據集,建立了基于機器學習的DWTT剪切面積預測模型。基于純產線數據和文獻數據輔助的產線數據構造了兩種機器學習策略方案,測試了不同機器學習算法,效果最好的均是隨機森林模型,策略一的純產線數據模型的性能指標皮爾遜相關系數(PCC)為0.64,策略二的文獻數據輔助的產線數據模型的性能指標皮爾遜相關系數(PCC)為0.92,文獻數據的增加有效提高了DWTT剪切面積預測精度。機器學習技術為優化和預測DWTT剪切面積提供了一種新的思路。

     

  • 圖  1  本研究中機器學習策略流程圖

    Figure  1.  Flowchart of machine learning strategies in this study.

    圖  2  產線數據的機器學習模型結果. (a)6種機器學習模型在產線數據上的皮爾遜相關系數(PCC)和平均絕對誤差(MAE)值;(b)實驗值與RF模型預測值的比較(所有模型均通過10折交叉驗證進行評估)

    Figure  2.  Machine learning (ML) model results for production line data: (a) pearson correlation coefficient (PCC) and mean absolute error (MAE) values of six ML models on production line data; (b) comparison between the experimental values and the predicted values of the RF model (All models were evaluated with 10-fold cross-validation)

    圖  3  DWTT 36個特征的Pearson相關系數圖(在特征集的相關系數矩陣中,顏色越深,相關性越高)

    Figure  3.  Pearson correlation coefficient diagram of 36 features of DWTT (In the correlation coefficient matrix of the feature set, the deeper the color, the higher the correlation)

    圖  4  管線鋼DWTT的特征篩選過程. (a)13個特征子集的平均重要性得分按升序排列;每個可能的特征子集RF模型的(b)皮爾遜相關系數(PCC)和(c)平均絕對誤差(MAE)值分布

    Figure  4.  Feature screening process of pipeline steel DWTT: (a) the average importance scores of 13 feature subsets are ranked in ascending order; the distribution of (b) pearson correlation coefficient (PCC) and (c) mean absolute error (MAE) values for each possible feature subset RF model

    圖  5  文獻數據輔助的產線數據機器學習模型結果. (a)6種機器學習模型在文獻數據輔助的產線數據集上的皮爾遜相關系數(PCC)和平均絕對誤差(MAE);(b)實驗值與RF模型預測值的比較(所有模型均通過10折交叉驗證進行評估)

    Figure  5.  Results of the machine learning model on the combination of literature data and production line data: (a) pearson correlation coefficient (PCC) and mean absolute error (MAE) of six machine learning models on the combination of literature data and production line data; (b) comparison between the experimental and predicted values of the RF model (All models were evaluated with 10-fold cross-validation)

    表  1  DWTT產線數據集中27個量

    Table  1.   Twenty-seven values in the DWTT production line dataset

    Input/outputAbb.DescriptionMaxMinMean
    InputsFeMass fraction of iron/%97.95297.64097.803
    CMass fraction of carbon/%0.0900.0500.063
    SiMass fraction of silicon/%0.2500.1500.204
    MnMass fraction of manganese/%1.7001.5501.618
    PMass fraction of phosphorus/%0.0180.0080.013
    SMass fraction of sulfur/%0.0030.0010.002
    NiMass fraction of nickel/%0.0200.0000.007
    CrMass fraction of chromium/%0.2200.0180.123
    MoMass fraction of molybdenum/%0.0900.0500.069
    TiMass fraction of titanium/%0.0170.0080.012
    CuMass fraction of copper/%0.0240.0000.010
    VMass fraction of vanadium/%0.0160.0000.002
    AlMass fraction of aluminum/%0.0440.0160.030
    NMass fraction of nitrogen/%0.0080.0010.004
    NbMass fraction of niobium/%0.0500.0300.039
    BMass fraction of boron/%0.00030.00010.0001
    CeqCarbon equivalent0.4040.3390.374
    THThickness/mm181216.838
    HVVickers hardness268169200.575
    UTSTensile strength/MPa746493613.817
    YSYield strength/MPa638400535.162
    ELElongation/%502041.465
    YRYield strength to tensile strength ratio0.960.680.872
    STSecondary rolling temperature/°C1079654898.165
    FTFinal rolling temperature/°C886666837.054
    TTETest temperature/°C?15?20?15.441
    OutputSAShear area/%1008895.132
    下載: 導出CSV

    表  2  DWTT文獻數據集中20個量

    Table  2.   Twenty values in DWTT literature dataset

    Input/outputAbb.DescriptionMaxMinMean
    InputsFeMass fraction of iron/%98.1895.6397.680
    CMass fraction of carbon/%0.1050.0350.055
    SiMass fraction of silicon/%0.400.000.237
    MnMass fraction of manganese/%1.941.101.657
    PMass fraction of phosphorus/%0.0160.000.007
    SMass fraction of sulfur/%0.0130.000.002
    NiMass fraction of nickel/%0.400.000.081
    CrMass fraction of chromium/%0.300.000.051
    MoMass fraction of molybdenum/%0.300.000.090
    TiMass fraction of titanium/%0.330.000.021
    CuMass fraction of copper/%0.300.000.050
    VMass fraction of vanadium/%0.500.000.025
    AlMass fraction of aluminum/%0.040.000.008
    NbMass fraction of niobium/%0.500.000.036
    THThickness/mm38.507.5021.715
    UTSTensile strength/MPa1023540649.327
    YSYield strength/MPa951469559.944
    ELElongation/%57834.131
    TTETest temperature/°C0?80?29.019
    OutputSAShear area/%100980.014
    下載: 導出CSV

    表  3  原子特征列表

    Table  3.   List of atomic features

    Abb.DescriptionFormulaReferences
    DPEFePE difference (Fe-based)$\mathop { {\text{d} }A}\nolimits^K = \sqrt {\displaystyle\sum\nolimits_{i = 1}^n {\mathop a\nolimits_i \mathop {\left( {1 - \frac{ {\mathop A\nolimits_i } }{ {\mathop A\nolimits_k } } } \right)}\nolimits^2 } }$[8,3235]
    DPECPE difference (C-based)
    DVEFeVE difference (Fe-based)
    DVECVE difference (C-based)
    DARFeAR difference (Fe-based)
    CDORMean concentration of DOR${\text{CA} } = \frac{ {\displaystyle\sum\nolimits_{i = 1}^n {\mathop a\nolimits_i \mathop A\nolimits_i } } }{ {\displaystyle\sum\nolimits_{i = 1}^n {\mathop a\nolimits_i \mathop { {\text{AN} } }\nolimits_i } } }$
    CVEMean concentration of VE
    CMRMean concentration of MR
    CCSMean concentration of CS
    CCRMean concentration of CR
    CPEMean concentration of PE
    CAMMean concentration of AM
    EBEElectron binding energies
    ANAtomic number$A = \displaystyle\sum\limits_{i = 1}^n {\mathop a\nolimits_i \mathop A\nolimits_i }$
    AMAtomic mass
    PRPoisson’s ratio
    MPMelting point
    YMYoung’s modulus
    BPBoiling point
    NENumber of elements
    CECohesive energy
    DENdensity
    E1First ionization energy
    DORWaber–Cromer pseudopotential radii
    TVEValance electron
    MRMetallic radius
    CSPettifor chemical scale
    CRClementi’s atomic radii
    PEPauling electronegativity
    ARAtomic radii
    MVMolar volume
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yoo J Y, Ahn S S, Seo D H, et al. New development of high grade X80 to X120 pipeline steels. Mater Manuf Process, 2011, 26(1): 154 doi: 10.1080/10426910903202534
    [2] Li H L, Ji L, Kang T W. Significant technical progress in the West-East Gas Pipeline Projects-Line One and Line Two. Nat Gas Ind, 2010, 30(4): 1

    李鶴林, 吉玲, 康田偉. 西氣東輸一、二線管道工程的幾項重大技術進步. 天然氣工業, 2010, 30(4):1
    [3] Ji L K, Feng H, Zhang J M, et al. Strain-hardening behavior of high grade linepipe steel and its influence factors. J Xian Shiyou Univ (Nat Sci Ed), 2017, 32(3): 99

    吉玲康, 封輝, 張繼明, 等. 高鋼級管線鋼形變硬化行為及其影響因素分析. 西安石油大學學報(自然科學版), 2017, 32(3):99
    [4] Ren Z P, Li D G, Li X W, et al. Construction and thinking of big data research and development platform for steel enterprises. J Iron Steel Res, 2021, 33(11): 1118 doi: 10.13228/j.boyuan.issn1001-0963.20200276

    任子平, 李德剛, 李曉偉, 等. 鋼鐵企業大數據研發平臺的建設與思考. 鋼鐵研究學報, 2021, 33(11):1118 doi: 10.13228/j.boyuan.issn1001-0963.20200276
    [5] Wang G D, Liu Z Y, Zhang D H, et al. Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure. J Iron Steel Res, 2021, 33(10): 1003 doi: 10.13228/j.boyuan.issn1001-0963.20210053

    王國棟, 劉振宇, 張殿華, 等. 材料科學技術轉型發展與鋼鐵創新基礎設施的建設. 鋼鐵研究學報, 2021, 33(10):1003 doi: 10.13228/j.boyuan.issn1001-0963.20210053
    [6] Li X R, Ban X J, Yuan Z L, et al. Review on deep learning models for time series forecasting in industry. Chin J Eng, 2022, 44(4): 757

    李瀟睿, 班曉娟, 袁兆麟, 等. 工業場景下基于深度學習的時序預測方法及應用. 工程科學學報, 2022, 44(4):757
    [7] Geng X X, Mao X P, Wu H H, et al. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels. J Mater Sci Technol, 2022, 107: 207 doi: 10.1016/j.jmst.2021.07.038
    [8] Chen Y M, Wang S Z, Xiong J, et al. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning. J Mater Sci Technol, 2023, 132: 213 doi: 10.1016/j.jmst.2022.05.051
    [9] Fürnkranz J, Gamberger D, Lavrač N. Foundations of Rule Learning. Lodon: Springer Science & Business Media, 2012
    [10] Jiang X, Jia B R, Zhang G F, et al. A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data. Scripta Mater, 2020, 186: 272 doi: 10.1016/j.scriptamat.2020.03.064
    [11] Zhao J H, Wang X Q, Kang J, et al. Crack propagation behavior during DWTT for X80 pipeline steel processed via ultra-fast cooling technique. Chin J Mater Res, 2017, 31(10): 728 doi: 10.11901/1005.3093.2016.055

    趙金華, 王學強, 康健, 等. 超快冷工藝下X80管線鋼的DWTT裂紋擴展行為. 材料研究學報, 2017, 31(10):728 doi: 10.11901/1005.3093.2016.055
    [12] Jiang C L, Lin T, Zhu J Y. Research on low-temperature DWTT of 33 mm thick-wall X80 pipeline steel plate. Iron Steel Vanadium Titanium, 2019, 40(4): 158 doi: 10.7513/j.issn.1004-7638.2019.04.029

    蔣昌林, 林濤, 諸建陽. 33 mm壁厚X80管線鋼板的低溫落錘撕裂研究. 鋼鐵釩鈦, 2019, 40(4):158 doi: 10.7513/j.issn.1004-7638.2019.04.029
    [13] Lu C J, Shao C J, Zhang L, et al. Experimental research on DWTT performance of high-strength pipeline steel. J Iron Steel Res, 2019, 31(12): 1065

    陸春潔, 邵春娟, 張磊, 等. 高強度管線鋼落錘撕裂性能的試驗. 鋼鐵研究學報, 2019, 31(12):1065
    [14] Huo X X, Zhou P, Huang S W, et al. Effect of the microstructure on the DWTT properties of X70 pipeline steel. Shandong Metall, 2011, 33(5): 99 doi: 10.3969/j.issn.1004-4620.2011.05.036

    霍孝新, 周平, 黃少文, 等. X70管線鋼微觀組織結構對落錘性能的影響. 山東冶金, 2011, 33(5):99 doi: 10.3969/j.issn.1004-4620.2011.05.036
    [15] Liu B, Wei F, Zhao Y, et al. Development and performance study of X80 Φ1422 mm × 38.5 mm thick wall SAWL pipe. Welded Pipe Tube, 2021, 44(1): 1

    劉斌, 韋奉, 趙勇, 等. X80鋼級Ф1422 mm×38.5 mm大壁厚直縫埋弧焊管的開發及性能研究. 5焊管, 2021, 44(1):1
    [16] Su D X, Xu W C. Research on influence of specimen thickness and drop weight test method on X70 pipeline steel DWTT performance. Welded Pipe Tube, 2018, 41(7): 21

    蘇大雄, 徐惟誠. 試樣厚度及落錘試驗方式對X70 DWTT性能影響的研究. 焊管, 2018, 41(7):21
    [17] Gao Y, Jiang J X, Zuo X R, et al. Microstructures and fracture behaviors in heavy thick multi-phase X80 pipeline steel. J Netshape Form Eng, 2018, 10(6): 43 doi: 10.3969/j.issn.1674-6457.2018.06.008

    高燕, 姜金星, 左秀榮, 等. 厚規格多相組織X80管線鋼組織控制與斷裂行為研究. 精密成形工程, 2018, 10(6):43 doi: 10.3969/j.issn.1674-6457.2018.06.008
    [18] Agrawal A, Deshpande P D, Cecen A, et al. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov, 2014, 3(1): 90 doi: 10.1186/2193-9772-3-8
    [19] Strnadel B, Ferfecki P, ?idlík P. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens. Eng Fract Mech, 2013, 112-113: 1 doi: 10.1016/j.engfracmech.2013.10.001
    [20] Hwang B, Shin S Y, Lee S, et al. Effect of microstructure on drop weight tear properties and inverse fracture occurring in hammer impacted region of high toughness X70 pipeline steels. Mater Sci Technol, 2008, 24(8): 945 doi: 10.1179/174328406X148732
    [21] Sha Q Y, Li D H. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content. Mater Sci Eng A, 2013, 585: 214 doi: 10.1016/j.msea.2013.07.055
    [22] Hwang B, Kim Y G, Lee S, et al. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels. Metall Mater Trans A, 2005, 36(8): 2107 doi: 10.1007/s11661-005-0331-9
    [23] Zhang J M, Sun W H, Sun H. Mechanical properties and microstructure of X120 grade high strength pipeline steel. J Iron Steel Res Int, 2010, 17(10): 63 doi: 10.1016/S1006-706X(10)60185-9
    [24] You Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content. Mater Sci Eng A, 2012, 558: 692 doi: 10.1016/j.msea.2012.08.077
    [25] Matrosov Y I, Bagmet O, Nosochenko A. Development of modern heavy plate steels for pipelines. Proceedings of the Materials Science Forum, 2007, 539-543: 4756 doi: 10.4028/www.scientific.net/MSF.539-543.4756
    [26] Johnson J, Hudson M, Takahashi N, et al. Specification and manufacturing of pipes for the X100 operational trial // Proceedings of 2008 7th International Pipeline Conference. Calgary, 2009: 453
    [27] Hillenbrand H G, Liessem A, Grimpe F, et al. Manufacturing of X100 pipes for the TAP project // Proceedings of the International Pipeline Conference. Calgary, 2006: 261
    [28] Zha C H, Jiang Z H, Wang W J, et al. Research and development of heavy wall X80 transmission pipeline steel with high deformation characteristics for polar environments at Shougang steel // Proceedings of the International Pipeline Conference. Calgary, 2012: 249
    [29] Aihara S, Lange H I, Misawa K, et al. Full-scale burst test of hydrogen gas X65 pipeline // Proceedings of 2010 8th International Pipeline Conference. Calgary, 2010: 415
    [30] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255 doi: 10.1126/science.aaa8415
    [31] Chai T, Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geosci Model Dev, 2014, 7: 1247 doi: 10.5194/gmd-7-1247-2014
    [32] Pauling L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc, 1932, 54(9): 3570
    [33] Waber J, Cromer D T. Orbital radii of atoms and ions. J Chem Phys, 1965, 42(12): 4116 doi: 10.1063/1.1695904
    [34] Clementi E, Raimondi D L. Atomic screening constants from SCF functions. J Chem Phys, 1963, 38(11): 2686 doi: 10.1063/1.1733573
    [35] Rabe K M, Phillips J C, Villars P, et al. Global multinary structural chemistry of stable quasicrystals, high-TC ferroelectrics, and high-Tc superconductors. Phys Rev B Condens Matter, 1992, 45(14): 7650 doi: 10.1103/PhysRevB.45.7650
    [36] Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater, 2020, 185: 528 doi: 10.1016/j.actamat.2019.11.067
    [37] He J J, Li J J, Liu C B, et al. Machine learning identified materials descriptors for ferroelectricity. Acta Mater, 2021, 209: 116815 doi: 10.1016/j.actamat.2021.116815
    [38] Romanski P, Kotthoff L, Kotthoff M L. Package ‘FSelector’ [J/OL]. Sciencepaper Online (2009-10-29) [2022-12-19]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=52ee687db3d94ec2143ab44021a303301ad133b1
    [39] Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng, 2014, 40(1): 16 doi: 10.1016/j.compeleceng.2013.11.024
    [40] James G, Witten D, Hastie T, et al. An Introduction to Statistical Learning. New York: springer, 2013
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  297
  • HTML全文瀏覽量:  118
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-12-19
  • 網絡出版日期:  2023-03-07
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回