[1] |
Xing Y, Cui Y K, Tian J L, et al. Application status and prospect of low carbon technology in iron and steel industry. Chin J Eng, 2022, 44(4): 801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030邢奕, 崔永康, 田京雷, 等. 鋼鐵行業低碳技術應用現狀與展望. 工程科學學報, 2022, 44(4):801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030
|
[2] |
Chen Z. Trend of China’s electrical steel under the background of carbon peak and carbon neutralization. Electr Steel, 2022, 4(1): 1陳卓. “雙碳”大背景下的中國電工鋼走勢. 電工鋼, 2022, 4(1):1
|
[3] |
Tang B J, Wang X Y, Wang B, et al. Analysis and prospect of China’s new energy vehicles industry development level. J Beijing Inst Technol (Soc Sci Ed), 2019, 21(2): 6 doi: 10.15918/j.jbitss1009-3370.2019.7261唐葆君, 王翔宇, 王彬, 等. 中國新能源汽車行業發展水平分析及展望. 北京理工大學學報(社會科學版), 2019, 21(2):6 doi: 10.15918/j.jbitss1009-3370.2019.7261
|
[4] |
Dai R, Zhang F G, Wang H J. Characteristics and key technical issues of high speed motors. Chin J Turbomach, 2019, 61(4): 59 doi: 10.16492/j.fjjs.2019.04.0010戴睿, 張鳳閣, 王惠軍. 高速電機的特點與關鍵技術問題. 風機技術, 2019, 61(4):59 doi: 10.16492/j.fjjs.2019.04.0010
|
[5] |
Gong J, Luo H W. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles. J Mater Eng, 2015, 43(6): 102 doi: 10.11868/j.issn.1001-4381.2015.06.016龔堅, 羅海文. 新能源汽車驅動電機用高強度無取向硅鋼片的研究與進展. 材料工程, 2015, 43(6):102 doi: 10.11868/j.issn.1001-4381.2015.06.016
|
[6] |
Ma D J, Li J W, Zhang H, et al. Analytical calculation and prediction method of electrical steel consumption for traction motor of new energy vehicle. Electr Steel, 2022, 4(2): 18馬德稷, 李建偉, 張航, 等. 新能源車驅動電機用電工鋼用量解析計算及預測方法. 電工鋼, 2022, 4(2):18
|
[7] |
Fan L F, Qin M M, Yue E B, et al. Technological challenges of new energy vehicle to non-oriented silicon steel. Mater Rep, 2021, 35(15): 15183 doi: 10.11896/cldb.20050259樊立峰, 秦美美, 岳爾斌, 等. 新能源汽車對無取向硅鋼的技術挑戰. 材料導報, 2021, 35(15):15183 doi: 10.11896/cldb.20050259
|
[8] |
Zhu C Y, Bao Y K, Wang Y, et al. Research progress on application status and property control of non-oriented silicon steel for traction motor of new energy vehicles. Mater Rep, 2021, 35(23): 23089 doi: 10.11896/cldb.20070220朱誠意, 鮑遠凱, 汪勇, 等. 新能源汽車驅動電機用無取向硅鋼應用現狀和性能調控研究進展. 材料導報, 2021, 35(23):23089 doi: 10.11896/cldb.20070220
|
[9] |
Oda Y, T Hiratani, S Kasai, et al. Recent developments of non-oriented electrical steel sheet for automobile electrical devices. J Magnetic Soc Japan, 2014(TN.38): 239
|
[10] |
Oda Y, Okubo T, Takata M. Recent development of non-oriented electrical steel in JFE steel. JFE Tech Rep, 2016(21): 7
|
[11] |
Takeaki W, Arai S, Kurosaki Y. Electrical steel sheet for traction motor of hybrid/electrical vehicles. Nippon Steel Technical Report, 2013, 103: 116
|
[12] |
Chen X, Xie S S, Wang B. Development of non-oriented silicon steels for traction motor use in electric vehicles // Proceedings III of 10th China Iron & Steel Annual Meeting and 6th Bao Steel Academic Annual Meeting. Shanghai, 2015: 1635陳曉, 謝世殊, 王波. 電動汽車驅動電機用無取向硅鋼產品的開發 // 第十屆中國鋼鐵年會暨第六屆寶鋼學術年會論文集III. 上海, 2015: 1635
|
[13] |
He Z J, Pei Y H, Shi L F, et al. High-Strength Cold-Rolled Non-Oriented Electrical Steel for Electrical Vehicle Driving Motor and Production Method: China Patent, CN202010143584.3. 2020-6-23何志堅, 裴英豪, 施立發. 一種電動汽車驅動電機用高強度冷軋無取向電工鋼及其生產方法; 中國專利, CN202010143584.3. 2020-6-23
|
[14] |
Lu T L, Pei Y H, Shi L F. Preparation Method of Rare Earth Treated High-Strength Non-Oriented Electrical Steel: China Patent, CN201910811202.7. 2019-10-25陸天林, 裴英豪, 施立發. 一種稀土處理的高強度無取向電工鋼制備方法; 中國專利, CN201910811202.7. 2019-10-25
|
[15] |
Shi W M, Feng D J, Zhu X B, et al. Excellent Magnetic Non-Oriented Electrical Steel with Rm≥600 MPa and Its Production Method: China Patent, CN201310420802.3. 2014-01-08石文敏, 馮大軍, 祝曉波, 等. Rm≥600 MPa的優良磁性能無取向電工鋼及其生產方法; 中國專利, CN201310420802.3. 2014-01-08
|
[16] |
Yang G, Shi W M, Feng D J, et al. Non-Oriented Silicon Steel for High-Speed Motor Rotor with Yield Strength ≥600 MPa and Production Method; China Patent, CN201711245381. X. 2018-5-1楊光, 石文敏, 馮大軍, 等. 一種屈服強度≥600 MPa高速電機轉子用無取向硅鋼及生產方法; 中國專利, CN201711245381. X. 2018-5-1
|
[17] |
Shi W M, Yang G, Li Z, et al. Method of Improving Cold Rolling Quality of High-Strength Non-Oriented Silicon Steel Containing Cu; China Patent, CN202110347327.6. 2021-7-6石文敏, 楊光, 李準, 等. 改善含Cu高強度無取向硅鋼冷軋質量的方法; 中國專利, CN202110347327.6. 2021-7-6
|
[18] |
Shen K Y, Zhang F, Li G B, et al. Non-Oriented Electrical Steel Plate for Simultaneous Sleeve Cutting of Stator and Rotor Cores and Manufacturing Method; China Patent, CN202010725450.2. 2022-1-25沈侃毅, 張峰, 李國保, 等. 一種定子, 轉子鐵芯同時套裁用無取向電工鋼板及其制造方法, 中國專利, CN202010725450.2. 2022-1-25
|
[19] |
Yong Q L. The Second Phase in Steel Materials. Beijing: Metallurgical Industry Press, 2006雍歧龍. 鋼鐵材料中的第二相. 北京: 冶金工業出版社, 2006
|
[20] |
Wang Y Q, Zhang X M, He Z, et al. Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting. Mater Sci Eng A, 2017, 703: 340 doi: 10.1016/j.msea.2017.07.075
|
[21] |
Mao W M, Yang P. Material Science Principles on Electrical Steels. Beijing: Higher Education Press, 2013毛衛民, 楊平. 電工鋼的材料學原理. 北京: 高等教育出版社, 2013
|
[22] |
He Z Z, Zhao Y, Luo H W. Electrical Steel. Beijing: Metallurgical Industry Press, 2012何忠治, 趙宇, 羅海文. 電工鋼. 北京: 冶金工業出版社, 2012
|
[23] |
Li Z H, Xie S K, Wang G D, et al. Ultrathin-gauge high silicon non-oriented electrical steel with high permeability and low core loss fabricated by optimized two-stage cold rolling method. Mater Charact, 2022, 183: 111593 doi: 10.1016/j.matchar.2021.111593
|
[24] |
Jiao H T, Xu Y B, Zhao L Z, et al. Microstructural evolution and magnetic properties in strip cast non-oriented silicon steel produced by warm rolling. Mater Charact, 2019, 156: 109876 doi: 10.1016/j.matchar.2019.109876
|
[25] |
Jiao H T, Xu Y B, Qiu W Z, et al. Significant effect of as-cast microstructure on texture evolution and magnetic properties of strip cast non-oriented silicon steel. J Mater Sci Technol, 2018, 34(12): 2472 doi: 10.1016/j.jmst.2018.05.007
|
[26] |
Lin Y, Miao X, Zhang W K. Effect of heat treatment process on high frequency magnetic properties and strength of cold rolled non-oriented electrical steel // Proceedings of the 13th China Electrical Steel Academic Conference. Jinan, 2015: 120林媛, 苗曉, 張文康. 常化和退火工藝對冷軋無取向電工鋼高頻磁性能和強度的影響 // 2015第十三屆中國電工鋼學術年會論文集. 濟南, 2015: 120
|
[27] |
Yu L, Luo H W. Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel. Acta Metall Sin, 2020, 56(3): 291 doi: 10.11900/0412.1961.2019.00314于雷, 羅海文. 部分再結晶退火對無取向硅鋼的磁性能與力學性能的影響. 金屬學報, 2020, 56(3):291 doi: 10.11900/0412.1961.2019.00314
|
[28] |
Tanaka I, Yashiki H. Magnetic and mechanical properties of newly developed high-strength nonoriented electrical steel. IEEE Trans Magn, 2010, 46(2): 290 doi: 10.1109/TMAG.2009.2033457
|
[29] |
Pan Z D, Xiang L, Zhang C, et al. Research progress of high strength non-oriented electrical steels. Mater Mech Eng, 2014, 38(4): 7潘振東, 項利, 張晨, 等. 高強度無取向電工鋼的研究進展. 機械工程材料, 2014, 38(4):7
|
[30] |
Cheng Z Y, Zhong B L, Jing W Q, et al. Effect of Cr on microstructure, texture and properties of Nb-containing high strength non-oriented silicon steel. Iron Steel, 2022, 57(5): 90程朝陽, 鐘柏林, 景文強, 等. Cr對含Nb高強無取向硅鋼組織、織構及性能的影響. 鋼鐵, 2022, 57(5):90
|
[31] |
Wan Y, Chen W Q. Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels. J Wuhan Univ Technol -Mat Sci Edit, 2015, 30(3): 574 doi: 10.1007/s11595-015-1191-9
|
[32] |
Lee S I, De Cooman B C. Influence of phosphorous and boron on the recrystallization, grain growth and mechanical properties of 3% Si steel. Mater Sci Forum, 2010, 654-656: 302 doi: 10.4028/www.scientific.net/MSF.654-656.302
|
[33] |
Xiong Z P, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels. Prog Mater Sci, 2021, 118: 100764 doi: 10.1016/j.pmatsci.2020.100764
|
[34] |
Hawezy D. The influence of silicon content on physical properties of non-oriented silicon steel. Mater Sci Technol, 2017, 33(14): 1560 doi: 10.1080/02670836.2017.1295519
|
[35] |
Barros J, Ros-Ya?ez T, Vandenbossche L, et al. The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel. J Magn Magn Mater, 2005, 290-291: 1457 doi: 10.1016/j.jmmm.2004.11.547
|
[36] |
Moseley D, Hu Y, Randle V, et al. Role of silicon content and final annealing temperature on microtexture and microstructure development in non-oriented silicon steel. Mater Sci Eng A, 2005, 392(1-2): 282 doi: 10.1016/j.msea.2004.10.027
|
[37] |
Lan M F, Zhang Y X, Fang F, et al. Effect of annealing after strip casting on microstructure, precipitates and texture in non-oriented silicon steel produced by twin-roll strip casting. Mater Charact, 2018, 142: 531 doi: 10.1016/j.matchar.2018.06.016
|
[38] |
Xu Y B, Jiao H T, Zhang Y X, et al. Effect of pre-annealing prior to cold rolling on the precipitation, microstructure and magnetic properties of strip-cast non-oriented electrical steels. J Mater Sci Technol, 2017, 33(12): 1465 doi: 10.1016/j.jmst.2017.08.002
|
[39] |
Jiao H T, Qiu W Z, Xiong W, et al. Effect of recrystallization annealing temperature on microstructure, texture and magnetic properties of non-oriented silicon steel produced by strip casting. Procedia Eng, 2017, 207: 2078 doi: 10.1016/j.proeng.2017.10.1116
|
[40] |
Liu H T, Li H L, Wang H, et al. Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel. J Magn Magn Mater, 2016, 406: 149 doi: 10.1016/j.jmmm.2016.01.018
|
[41] |
Fang F, Xu Y B, Zhang Y X, et al. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels. J Magn Magn Mater, 2015, 381: 433 doi: 10.1016/j.jmmm.2015.01.026
|
[42] |
Zhang F Q, Liu Z Y, Luo Z H, et al. Microstructure and properties of 6.5% Si Steel thin strip produced through twin-roll continuous casting process. Wuhan Iron Steel Corp Technol, 2015, 53(3): 20張鳳泉, 劉振宇, 駱忠漢, 等. 雙輥連鑄制備6.5%Si硅鋼薄帶的組織與性能. 武鋼技術, 2015, 53(3):20
|
[43] |
Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5wt% Si non-oriented electrical steel. J Magn Magn Mater, 2015, 391: 65
|
[44] |
Saxena A, Chaudhuri S K. Correlating the aluminum content with ferrite grain size and core loss in non-oriented electrical steel. ISIJ Int, 2004, 44(7): 1273 doi: 10.2355/isijinternational.44.1273
|
[45] |
Miao X, Zhang W K, Wang Y D. Effect of Al content on structure, texture and magnetic performance of 2.2%Si non-oriented silicon steel. Special Steel, 2011, 32(6): 56苗曉, 張文康, 王一德. Al含量對2.2%Si無取向硅鋼組織、織構和磁性能的影響. 特殊鋼, 2011, 32(6):56
|
[46] |
Nakayama T, Honjou N. Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet. J Magn Magn Mater, 2000, 213(1-2): 87 doi: 10.1016/S0304-8853(00)00005-6
|
[47] |
Zhang X R, Xie X X. Effect of alloying elements and process on magnetic properties of high-grade non-oriented silicon steel. Res Irona Nd Steel, 1988, 16(4): 10張新仁, 謝曉心. 合金元素及工藝對高牌號無取向硅鋼磁性的影響. 鋼鐵研究, 1988, 16(4):10
|
[48] |
Schulte M, Steentjes S, Leuning N, et al. Effect of Manganese in high silicon alloyed non-oriented electrical steel sheets. J Magn Magn Mater, 2019, 477: 372 doi: 10.1016/j.jmmm.2018.07.025
|
[49] |
Yu C L, Liu J, Fu B, et al. Effect of Mn on the microstructure, texture and magnetic properties of high grade non-oriented silicon steel. J Funct Mater, 2021, 52(7): 7072 doi: 10.3969/j.issn.1001-9731.2021.07.012余春雷, 劉靜, 付兵, 等. Mn對高牌號無取向硅鋼組織、織構及磁性能的影響. 功能材料, 2021, 52(7):7072 doi: 10.3969/j.issn.1001-9731.2021.07.012
|
[50] |
Nakayama T, Honjou N, Minaga T, et al. Effects of Manganese and sulfur contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed electrical steel sheet. J Magn Magn Mater, 2001, 234(1): 55 doi: 10.1016/S0304-8853(01)00208-6
|
[51] |
Jenkins K, Lindenmo M. Precipitates in electrical steels. J Magn Magn Mater, 2008, 320(20): 2423 doi: 10.1016/j.jmmm.2008.03.062
|
[52] |
Qiao J L, Guo F H, Hu J W, et al. Development of thin-gauge low iron loss non-oriented silicon steel. Metall Res Technol, 2021, 118(1): 113 doi: 10.1051/metal/2020091
|
[53] |
Oda Y, Tadashi N, Shinji K. Non-Directional Electromagnetic Steel Sheet Having Excellent Magnetic Properties: Japan Patent, P2015-131993A. 2015-7-23野田佳彥, 中西匡, 小関新司. 磁性能優良的無方向性電磁鋼板: 日本, P2015-131993A. 2015-7-23
|
[54] |
Pan Z D, Lin Y, Hou P F, et al. Development of high-strength non-oriented electrical steel containing Ni in laboratory // Proceedings of the 14th Chinese Electrical Steel Academic Annual Conference. Ningbo, 2017: 104潘振東, 林媛, 侯鵬飛, 等. 實驗室研制含Ni高強度無取向電工鋼 // 第十四屆中國電工鋼學術年會. 寧波, 2017: 104
|
[55] |
Shi W M, Yang G, Feng D J, et al. Effect of Zirconium on the microstructure, texture and properties of non-oriented electrical steel // Proceedings of China Iron & Steel Annual Meeting. Beijing, 2017: 61石文敏, 楊光, 馮大軍, 等. 鋯對無取向電工鋼組織, 織構及性能的影響 // 第十一屆中國鋼鐵年會論文集. 北京, 2017: 61
|
[56] |
Nakayama T, Takahashi M. Effects of vanadium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci, 1995, 30(23): 5979 doi: 10.1007/BF01151515
|
[57] |
Nakayama T, Tanaka T. Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci, 1997, 32(4): 1055 doi: 10.1023/A:1018590725223
|
[58] |
Kong X B, Ren H P, Jin Z L, et al. Influence of annealing temperature on precipitates and properties of Nb-Ti microalloyed high-strength non-oriented electrical steel. Trans Mater Heat Treat, 2020, 41(8): 68 doi: 10.13289/j.issn.1009-6264.2020-0092孔祥兵, 任慧平, 金自力, 等. 退火溫度對Nb-Ti微合金化高強無取向電工鋼析出物及性能的影響. 材料熱處理學報, 2020, 41(8):68 doi: 10.13289/j.issn.1009-6264.2020-0092
|
[59] |
Kong X B. Research on Annealing Process of Non-oriented Electrical Steel for Rare Earth New Energy [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020孔祥兵. 稀土新能源無取向電工鋼退火工藝的研究[學位論文]. 包頭: 內蒙古科技大學, 2020
|
[60] |
Wang Y Q. Research on the Microstructure, Texture and Properties of High Strength Non-oriented Electrical Steel Processed by Strip Casting Method [Dissertation]. Shenyang: Northeastern University, 2019王郁倩. 薄帶連鑄高強度無取向電工鋼組織、織構及性能研究[學位論文]. 沈陽: 東北大學, 2019
|
[61] |
Duan J Y. Study on Microstructure, Texture and Properties of Nb-microalloyed Non-oriented Silicon Steel with High Strength Produced by Strip Casting [Dissertation]. Shenyang: Northeastern University, 2017段軍陽. 薄帶連鑄含鈮高強度無取向硅鋼的組織、織構及性能研究[學位論文]. 沈陽: 東北大學, 2017
|
[62] |
Han G, Xie Z J, Xiong L, et al. Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment. Mater Sci Eng A, 2017, 705: 89 doi: 10.1016/j.msea.2017.08.061
|
[63] |
Han G, Xie Z J, Lei B, et al. Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-γ phase in a low carbon low alloy steel. Mater Sci Eng A, 2018, 730: 119 doi: 10.1016/j.msea.2018.05.080
|
[64] |
Sun H L, Li D D, Diao Y P, et al. Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Mater Charact, 2022, 188: 111885 doi: 10.1016/j.matchar.2022.111885
|
[65] |
Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying. Mater Lett, 2022, 316: 132031 doi: 10.1016/j.matlet.2022.132031
|
[66] |
Fang F, Che S F, Hou D W, et al. Thin-gauge non-oriented silicon steel with balanced magnetic and mechanical properties processed by strip casting. Mater Sci Eng A, 2022, 831: 142284 doi: 10.1016/j.msea.2021.142284
|
[67] |
Fang F, Hou D W, Wang Z L, et al. Microstructure characteristics and strengthening behavior of Cu-bearing non-oriented silicon steel: Conventional process versus strip casting. Metals, 2021, 11(11): 1815 doi: 10.3390/met11111815
|
[68] |
Hou D W, Fang F, Wang Y, et al. Nanoprecipitation behavior and resultant mechanical and magnetic properties in Fe–Si–Ni–Al–Mn high strength non-oriented silicon steel. Mater Sci Eng A, 2021, 819: 141529 doi: 10.1016/j.msea.2021.141529
|
[69] |
Bian X H, Zeng Y P, Nan D, et al. The effect of copper precipitates on the recrystallization textures and magnetic properties of non-oriented electrical steels. J Alloys Compd, 2014, 588: 108 doi: 10.1016/j.jallcom.2013.11.010
|
[70] |
Wu M, Zeng Y P. Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels. J Magn Magn Mater, 2015, 391: 96 doi: 10.1016/j.jmmm.2015.04.085
|