<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

新能源汽車驅動電機用高強無取向硅鋼力、磁性能調控研究進展

程朝陽 鐘柏林 倪正軒 景文強 張施琦 劉靜

程朝陽, 鐘柏林, 倪正軒, 景文強, 張施琦, 劉靜. 新能源汽車驅動電機用高強無取向硅鋼力、磁性能調控研究進展[J]. 工程科學學報, 2023, 45(9): 1482-1492. doi: 10.13374/j.issn2095-9389.2022.09.06.004
引用本文: 程朝陽, 鐘柏林, 倪正軒, 景文強, 張施琦, 劉靜. 新能源汽車驅動電機用高強無取向硅鋼力、磁性能調控研究進展[J]. 工程科學學報, 2023, 45(9): 1482-1492. doi: 10.13374/j.issn2095-9389.2022.09.06.004
CHENG Zhaoyang, ZHONG Bolin, NI Zhengxuan, JING Wenqiang, ZHANG Shiqi, LIU Jing. Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors[J]. Chinese Journal of Engineering, 2023, 45(9): 1482-1492. doi: 10.13374/j.issn2095-9389.2022.09.06.004
Citation: CHENG Zhaoyang, ZHONG Bolin, NI Zhengxuan, JING Wenqiang, ZHANG Shiqi, LIU Jing. Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors[J]. Chinese Journal of Engineering, 2023, 45(9): 1482-1492. doi: 10.13374/j.issn2095-9389.2022.09.06.004

新能源汽車驅動電機用高強無取向硅鋼力、磁性能調控研究進展

doi: 10.13374/j.issn2095-9389.2022.09.06.004
基金項目: 國家自然科學基金資助項目(52074200, 52274393);湖北省重點研發計劃資助項目(2020BAA027);湖北省自然科學基金資助項目(2022CFB091)
詳細信息
    通訊作者:

    E-mail: liujing@wust.edu.cn

  • 中圖分類號: TG142.1

Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors

More Information
  • 摘要: 新能源汽車能夠有效緩解傳統汽車行業對化石燃料的嚴重依賴和全球所面臨的環境問題,是未來發展的必然趨勢。驅動電機作為新能源汽車的動力核心,不僅需要具有優異的磁性能提高能源轉換效率,同時需要具有高強度來抵抗高速運轉時的離心力。然而,無取向硅鋼的強度和磁性能難以兼顧,因此無取向硅鋼力、磁性能的協同調控是新能源汽車驅動電機發展過程中的一個關鍵科學問題。本文綜述了國內外有關高強無取向硅鋼力學性能和磁性能調控的相關研究現狀,分析了不同強化方式對無取向硅鋼磁性能的影響,指出了新能源汽車驅動電機用高強無取向硅鋼力學性能和磁性能協同調控的未來發展趨勢,即多種強化方式共同作用或利用細小彌散的納米共格析出相實現高強無取向硅鋼力、磁性能的最佳匹配,為新能源汽車驅動電機用高強無取向硅鋼的發展提供借鑒。

     

  • 圖  1  新能源汽車驅動電機與電機鐵芯性能需求

    Figure  1.  Performance requirements of driving motor and motor core of new energy vehicles

    圖  2  國內外高強無取向硅鋼產品性能. (a) JFE; (b)新日鐵; (c)國內企業

    Figure  2.  Performance of domestic and foreign high-strength non-oriented silicon steels: (a) JFE Steel; (b) Nippon Steel; (c) domestic steel

    圖  3  無取向硅鋼鐵損P1.5/50與平均晶粒尺寸的關系

    Figure  3.  Relationship between iron loss P1.5/50 and average grain size in nonoriented silicon steels

    圖  4  鐵素體鋼中平均晶粒尺寸對屈服強度貢獻量的影響

    Figure  4.  Effect of average grain size on yield strength increment in ferritic steels

    圖  5  不同退火溫度下保溫240 s對再結晶百分比, 位錯密度, 屈服強度增量的影響

    Figure  5.  Effect of various annealing temperatures (240 s) on the recrystallized percentage, dislocation density, and yield strength increment

    圖  6  合金元素固溶量為0.1%時對屈服強度產生的增量

    Figure  6.  Yield strength increment by solid solution strengthening with 0.1% alloying elements

    圖  7  元素對無取向硅鋼磁性能的影響. (a) Si; (b) Al; (c) Mn

    Figure  7.  Effect of alloying elements on the magnetic properties of nonoriented silicon steels: (a) Si; (b) Al; (c) Mn

    圖  8  繞過機制與切過機制

    Figure  8.  Schematic diagram of the Orowan and cutting mechanisms

    圖  9  退火溫度對含Nb與不含Nb無取向硅鋼性能的影響. (a)屈服強度; (b)磁感應強度B50; (c)鐵損P1.0/400

    Figure  9.  Effect of annealing temperature on the properties of nonoriented silicon steels with or without Nb: (a) yield strength; (b) magnetic induction B50; (c) iron loss P1.0/400

    圖  10  無取向硅鋼中時效時間對Cu析出相結構演變的影響[20,66]. (a~e) BCC→9R→FCC; (f~k) BCC→FCC

    Figure  10.  Effect of aging time on the crystal structure evolution of Cu precipitation in nonoriented silicon steels[20,66]: (a–e) BCC→ 9R→ FCC; (f–k) BCC→ FCC

    圖  11  時效過程中Cu析出相對無取向硅鋼性能的影響. (a~c)屈服強度; (d)磁性能

    Figure  11.  Effect of Cu precipitation formed during aging treatment on the properties of nonoriented silicon steels: (a–c) yield strength; (d) magnetic properties

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xing Y, Cui Y K, Tian J L, et al. Application status and prospect of low carbon technology in iron and steel industry. Chin J Eng, 2022, 44(4): 801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030

    邢奕, 崔永康, 田京雷, 等. 鋼鐵行業低碳技術應用現狀與展望. 工程科學學報, 2022, 44(4):801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030
    [2] Chen Z. Trend of China’s electrical steel under the background of carbon peak and carbon neutralization. Electr Steel, 2022, 4(1): 1

    陳卓. “雙碳”大背景下的中國電工鋼走勢. 電工鋼, 2022, 4(1):1
    [3] Tang B J, Wang X Y, Wang B, et al. Analysis and prospect of China’s new energy vehicles industry development level. J Beijing Inst Technol (Soc Sci Ed), 2019, 21(2): 6 doi: 10.15918/j.jbitss1009-3370.2019.7261

    唐葆君, 王翔宇, 王彬, 等. 中國新能源汽車行業發展水平分析及展望. 北京理工大學學報(社會科學版), 2019, 21(2):6 doi: 10.15918/j.jbitss1009-3370.2019.7261
    [4] Dai R, Zhang F G, Wang H J. Characteristics and key technical issues of high speed motors. Chin J Turbomach, 2019, 61(4): 59 doi: 10.16492/j.fjjs.2019.04.0010

    戴睿, 張鳳閣, 王惠軍. 高速電機的特點與關鍵技術問題. 風機技術, 2019, 61(4):59 doi: 10.16492/j.fjjs.2019.04.0010
    [5] Gong J, Luo H W. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles. J Mater Eng, 2015, 43(6): 102 doi: 10.11868/j.issn.1001-4381.2015.06.016

    龔堅, 羅海文. 新能源汽車驅動電機用高強度無取向硅鋼片的研究與進展. 材料工程, 2015, 43(6):102 doi: 10.11868/j.issn.1001-4381.2015.06.016
    [6] Ma D J, Li J W, Zhang H, et al. Analytical calculation and prediction method of electrical steel consumption for traction motor of new energy vehicle. Electr Steel, 2022, 4(2): 18

    馬德稷, 李建偉, 張航, 等. 新能源車驅動電機用電工鋼用量解析計算及預測方法. 電工鋼, 2022, 4(2):18
    [7] Fan L F, Qin M M, Yue E B, et al. Technological challenges of new energy vehicle to non-oriented silicon steel. Mater Rep, 2021, 35(15): 15183 doi: 10.11896/cldb.20050259

    樊立峰, 秦美美, 岳爾斌, 等. 新能源汽車對無取向硅鋼的技術挑戰. 材料導報, 2021, 35(15):15183 doi: 10.11896/cldb.20050259
    [8] Zhu C Y, Bao Y K, Wang Y, et al. Research progress on application status and property control of non-oriented silicon steel for traction motor of new energy vehicles. Mater Rep, 2021, 35(23): 23089 doi: 10.11896/cldb.20070220

    朱誠意, 鮑遠凱, 汪勇, 等. 新能源汽車驅動電機用無取向硅鋼應用現狀和性能調控研究進展. 材料導報, 2021, 35(23):23089 doi: 10.11896/cldb.20070220
    [9] Oda Y, T Hiratani, S Kasai, et al. Recent developments of non-oriented electrical steel sheet for automobile electrical devices. J Magnetic Soc Japan, 2014(TN.38): 239
    [10] Oda Y, Okubo T, Takata M. Recent development of non-oriented electrical steel in JFE steel. JFE Tech Rep, 2016(21): 7
    [11] Takeaki W, Arai S, Kurosaki Y. Electrical steel sheet for traction motor of hybrid/electrical vehicles. Nippon Steel Technical Report, 2013, 103: 116
    [12] Chen X, Xie S S, Wang B. Development of non-oriented silicon steels for traction motor use in electric vehicles // Proceedings III of 10th China Iron & Steel Annual Meeting and 6th Bao Steel Academic Annual Meeting. Shanghai, 2015: 1635

    陳曉, 謝世殊, 王波. 電動汽車驅動電機用無取向硅鋼產品的開發 // 第十屆中國鋼鐵年會暨第六屆寶鋼學術年會論文集III. 上海, 2015: 1635
    [13] He Z J, Pei Y H, Shi L F, et al. High-Strength Cold-Rolled Non-Oriented Electrical Steel for Electrical Vehicle Driving Motor and Production Method: China Patent, CN202010143584.3. 2020-6-23

    何志堅, 裴英豪, 施立發. 一種電動汽車驅動電機用高強度冷軋無取向電工鋼及其生產方法; 中國專利, CN202010143584.3. 2020-6-23
    [14] Lu T L, Pei Y H, Shi L F. Preparation Method of Rare Earth Treated High-Strength Non-Oriented Electrical Steel: China Patent, CN201910811202.7. 2019-10-25

    陸天林, 裴英豪, 施立發. 一種稀土處理的高強度無取向電工鋼制備方法; 中國專利, CN201910811202.7. 2019-10-25
    [15] Shi W M, Feng D J, Zhu X B, et al. Excellent Magnetic Non-Oriented Electrical Steel with Rm600 MPa and Its Production Method: China Patent, CN201310420802.3. 2014-01-08

    石文敏, 馮大軍, 祝曉波, 等. Rm≥600 MPa的優良磁性能無取向電工鋼及其生產方法; 中國專利, CN201310420802.3. 2014-01-08
    [16] Yang G, Shi W M, Feng D J, et al. Non-Oriented Silicon Steel for High-Speed Motor Rotor with Yield Strength ≥600 MPa and Production Method; China Patent, CN201711245381. X. 2018-5-1

    楊光, 石文敏, 馮大軍, 等. 一種屈服強度≥600 MPa高速電機轉子用無取向硅鋼及生產方法; 中國專利, CN201711245381. X. 2018-5-1
    [17] Shi W M, Yang G, Li Z, et al. Method of Improving Cold Rolling Quality of High-Strength Non-Oriented Silicon Steel Containing Cu; China Patent, CN202110347327.6. 2021-7-6

    石文敏, 楊光, 李準, 等. 改善含Cu高強度無取向硅鋼冷軋質量的方法; 中國專利, CN202110347327.6. 2021-7-6
    [18] Shen K Y, Zhang F, Li G B, et al. Non-Oriented Electrical Steel Plate for Simultaneous Sleeve Cutting of Stator and Rotor Cores and Manufacturing Method; China Patent, CN202010725450.2. 2022-1-25

    沈侃毅, 張峰, 李國保, 等. 一種定子, 轉子鐵芯同時套裁用無取向電工鋼板及其制造方法, 中國專利, CN202010725450.2. 2022-1-25
    [19] Yong Q L. The Second Phase in Steel Materials. Beijing: Metallurgical Industry Press, 2006

    雍歧龍. 鋼鐵材料中的第二相. 北京: 冶金工業出版社, 2006
    [20] Wang Y Q, Zhang X M, He Z, et al. Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting. Mater Sci Eng A, 2017, 703: 340 doi: 10.1016/j.msea.2017.07.075
    [21] Mao W M, Yang P. Material Science Principles on Electrical Steels. Beijing: Higher Education Press, 2013

    毛衛民, 楊平. 電工鋼的材料學原理. 北京: 高等教育出版社, 2013
    [22] He Z Z, Zhao Y, Luo H W. Electrical Steel. Beijing: Metallurgical Industry Press, 2012

    何忠治, 趙宇, 羅海文. 電工鋼. 北京: 冶金工業出版社, 2012
    [23] Li Z H, Xie S K, Wang G D, et al. Ultrathin-gauge high silicon non-oriented electrical steel with high permeability and low core loss fabricated by optimized two-stage cold rolling method. Mater Charact, 2022, 183: 111593 doi: 10.1016/j.matchar.2021.111593
    [24] Jiao H T, Xu Y B, Zhao L Z, et al. Microstructural evolution and magnetic properties in strip cast non-oriented silicon steel produced by warm rolling. Mater Charact, 2019, 156: 109876 doi: 10.1016/j.matchar.2019.109876
    [25] Jiao H T, Xu Y B, Qiu W Z, et al. Significant effect of as-cast microstructure on texture evolution and magnetic properties of strip cast non-oriented silicon steel. J Mater Sci Technol, 2018, 34(12): 2472 doi: 10.1016/j.jmst.2018.05.007
    [26] Lin Y, Miao X, Zhang W K. Effect of heat treatment process on high frequency magnetic properties and strength of cold rolled non-oriented electrical steel // Proceedings of the 13th China Electrical Steel Academic Conference. Jinan, 2015: 120

    林媛, 苗曉, 張文康. 常化和退火工藝對冷軋無取向電工鋼高頻磁性能和強度的影響 // 2015第十三屆中國電工鋼學術年會論文集. 濟南, 2015: 120
    [27] Yu L, Luo H W. Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel. Acta Metall Sin, 2020, 56(3): 291 doi: 10.11900/0412.1961.2019.00314

    于雷, 羅海文. 部分再結晶退火對無取向硅鋼的磁性能與力學性能的影響. 金屬學報, 2020, 56(3):291 doi: 10.11900/0412.1961.2019.00314
    [28] Tanaka I, Yashiki H. Magnetic and mechanical properties of newly developed high-strength nonoriented electrical steel. IEEE Trans Magn, 2010, 46(2): 290 doi: 10.1109/TMAG.2009.2033457
    [29] Pan Z D, Xiang L, Zhang C, et al. Research progress of high strength non-oriented electrical steels. Mater Mech Eng, 2014, 38(4): 7

    潘振東, 項利, 張晨, 等. 高強度無取向電工鋼的研究進展. 機械工程材料, 2014, 38(4):7
    [30] Cheng Z Y, Zhong B L, Jing W Q, et al. Effect of Cr on microstructure, texture and properties of Nb-containing high strength non-oriented silicon steel. Iron Steel, 2022, 57(5): 90

    程朝陽, 鐘柏林, 景文強, 等. Cr對含Nb高強無取向硅鋼組織、織構及性能的影響. 鋼鐵, 2022, 57(5):90
    [31] Wan Y, Chen W Q. Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels. J Wuhan Univ Technol -Mat Sci Edit, 2015, 30(3): 574 doi: 10.1007/s11595-015-1191-9
    [32] Lee S I, De Cooman B C. Influence of phosphorous and boron on the recrystallization, grain growth and mechanical properties of 3% Si steel. Mater Sci Forum, 2010, 654-656: 302 doi: 10.4028/www.scientific.net/MSF.654-656.302
    [33] Xiong Z P, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels. Prog Mater Sci, 2021, 118: 100764 doi: 10.1016/j.pmatsci.2020.100764
    [34] Hawezy D. The influence of silicon content on physical properties of non-oriented silicon steel. Mater Sci Technol, 2017, 33(14): 1560 doi: 10.1080/02670836.2017.1295519
    [35] Barros J, Ros-Ya?ez T, Vandenbossche L, et al. The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel. J Magn Magn Mater, 2005, 290-291: 1457 doi: 10.1016/j.jmmm.2004.11.547
    [36] Moseley D, Hu Y, Randle V, et al. Role of silicon content and final annealing temperature on microtexture and microstructure development in non-oriented silicon steel. Mater Sci Eng A, 2005, 392(1-2): 282 doi: 10.1016/j.msea.2004.10.027
    [37] Lan M F, Zhang Y X, Fang F, et al. Effect of annealing after strip casting on microstructure, precipitates and texture in non-oriented silicon steel produced by twin-roll strip casting. Mater Charact, 2018, 142: 531 doi: 10.1016/j.matchar.2018.06.016
    [38] Xu Y B, Jiao H T, Zhang Y X, et al. Effect of pre-annealing prior to cold rolling on the precipitation, microstructure and magnetic properties of strip-cast non-oriented electrical steels. J Mater Sci Technol, 2017, 33(12): 1465 doi: 10.1016/j.jmst.2017.08.002
    [39] Jiao H T, Qiu W Z, Xiong W, et al. Effect of recrystallization annealing temperature on microstructure, texture and magnetic properties of non-oriented silicon steel produced by strip casting. Procedia Eng, 2017, 207: 2078 doi: 10.1016/j.proeng.2017.10.1116
    [40] Liu H T, Li H L, Wang H, et al. Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel. J Magn Magn Mater, 2016, 406: 149 doi: 10.1016/j.jmmm.2016.01.018
    [41] Fang F, Xu Y B, Zhang Y X, et al. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels. J Magn Magn Mater, 2015, 381: 433 doi: 10.1016/j.jmmm.2015.01.026
    [42] Zhang F Q, Liu Z Y, Luo Z H, et al. Microstructure and properties of 6.5% Si Steel thin strip produced through twin-roll continuous casting process. Wuhan Iron Steel Corp Technol, 2015, 53(3): 20

    張鳳泉, 劉振宇, 駱忠漢, 等. 雙輥連鑄制備6.5%Si硅鋼薄帶的組織與性能. 武鋼技術, 2015, 53(3):20
    [43] Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5wt% Si non-oriented electrical steel. J Magn Magn Mater, 2015, 391: 65
    [44] Saxena A, Chaudhuri S K. Correlating the aluminum content with ferrite grain size and core loss in non-oriented electrical steel. ISIJ Int, 2004, 44(7): 1273 doi: 10.2355/isijinternational.44.1273
    [45] Miao X, Zhang W K, Wang Y D. Effect of Al content on structure, texture and magnetic performance of 2.2%Si non-oriented silicon steel. Special Steel, 2011, 32(6): 56

    苗曉, 張文康, 王一德. Al含量對2.2%Si無取向硅鋼組織、織構和磁性能的影響. 特殊鋼, 2011, 32(6):56
    [46] Nakayama T, Honjou N. Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet. J Magn Magn Mater, 2000, 213(1-2): 87 doi: 10.1016/S0304-8853(00)00005-6
    [47] Zhang X R, Xie X X. Effect of alloying elements and process on magnetic properties of high-grade non-oriented silicon steel. Res Irona Nd Steel, 1988, 16(4): 10

    張新仁, 謝曉心. 合金元素及工藝對高牌號無取向硅鋼磁性的影響. 鋼鐵研究, 1988, 16(4):10
    [48] Schulte M, Steentjes S, Leuning N, et al. Effect of Manganese in high silicon alloyed non-oriented electrical steel sheets. J Magn Magn Mater, 2019, 477: 372 doi: 10.1016/j.jmmm.2018.07.025
    [49] Yu C L, Liu J, Fu B, et al. Effect of Mn on the microstructure, texture and magnetic properties of high grade non-oriented silicon steel. J Funct Mater, 2021, 52(7): 7072 doi: 10.3969/j.issn.1001-9731.2021.07.012

    余春雷, 劉靜, 付兵, 等. Mn對高牌號無取向硅鋼組織、織構及磁性能的影響. 功能材料, 2021, 52(7):7072 doi: 10.3969/j.issn.1001-9731.2021.07.012
    [50] Nakayama T, Honjou N, Minaga T, et al. Effects of Manganese and sulfur contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed electrical steel sheet. J Magn Magn Mater, 2001, 234(1): 55 doi: 10.1016/S0304-8853(01)00208-6
    [51] Jenkins K, Lindenmo M. Precipitates in electrical steels. J Magn Magn Mater, 2008, 320(20): 2423 doi: 10.1016/j.jmmm.2008.03.062
    [52] Qiao J L, Guo F H, Hu J W, et al. Development of thin-gauge low iron loss non-oriented silicon steel. Metall Res Technol, 2021, 118(1): 113 doi: 10.1051/metal/2020091
    [53] Oda Y, Tadashi N, Shinji K. Non-Directional Electromagnetic Steel Sheet Having Excellent Magnetic Properties: Japan Patent, P2015-131993A. 2015-7-23

    野田佳彥, 中西匡, 小関新司. 磁性能優良的無方向性電磁鋼板: 日本, P2015-131993A. 2015-7-23
    [54] Pan Z D, Lin Y, Hou P F, et al. Development of high-strength non-oriented electrical steel containing Ni in laboratory // Proceedings of the 14th Chinese Electrical Steel Academic Annual Conference. Ningbo, 2017: 104

    潘振東, 林媛, 侯鵬飛, 等. 實驗室研制含Ni高強度無取向電工鋼 // 第十四屆中國電工鋼學術年會. 寧波, 2017: 104
    [55] Shi W M, Yang G, Feng D J, et al. Effect of Zirconium on the microstructure, texture and properties of non-oriented electrical steel // Proceedings of China Iron & Steel Annual Meeting. Beijing, 2017: 61

    石文敏, 楊光, 馮大軍, 等. 鋯對無取向電工鋼組織, 織構及性能的影響 // 第十一屆中國鋼鐵年會論文集. 北京, 2017: 61
    [56] Nakayama T, Takahashi M. Effects of vanadium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci, 1995, 30(23): 5979 doi: 10.1007/BF01151515
    [57] Nakayama T, Tanaka T. Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci, 1997, 32(4): 1055 doi: 10.1023/A:1018590725223
    [58] Kong X B, Ren H P, Jin Z L, et al. Influence of annealing temperature on precipitates and properties of Nb-Ti microalloyed high-strength non-oriented electrical steel. Trans Mater Heat Treat, 2020, 41(8): 68 doi: 10.13289/j.issn.1009-6264.2020-0092

    孔祥兵, 任慧平, 金自力, 等. 退火溫度對Nb-Ti微合金化高強無取向電工鋼析出物及性能的影響. 材料熱處理學報, 2020, 41(8):68 doi: 10.13289/j.issn.1009-6264.2020-0092
    [59] Kong X B. Research on Annealing Process of Non-oriented Electrical Steel for Rare Earth New Energy [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020

    孔祥兵. 稀土新能源無取向電工鋼退火工藝的研究[學位論文]. 包頭: 內蒙古科技大學, 2020
    [60] Wang Y Q. Research on the Microstructure, Texture and Properties of High Strength Non-oriented Electrical Steel Processed by Strip Casting Method [Dissertation]. Shenyang: Northeastern University, 2019

    王郁倩. 薄帶連鑄高強度無取向電工鋼組織、織構及性能研究[學位論文]. 沈陽: 東北大學, 2019
    [61] Duan J Y. Study on Microstructure, Texture and Properties of Nb-microalloyed Non-oriented Silicon Steel with High Strength Produced by Strip Casting [Dissertation]. Shenyang: Northeastern University, 2017

    段軍陽. 薄帶連鑄含鈮高強度無取向硅鋼的組織、織構及性能研究[學位論文]. 沈陽: 東北大學, 2017
    [62] Han G, Xie Z J, Xiong L, et al. Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment. Mater Sci Eng A, 2017, 705: 89 doi: 10.1016/j.msea.2017.08.061
    [63] Han G, Xie Z J, Lei B, et al. Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-γ phase in a low carbon low alloy steel. Mater Sci Eng A, 2018, 730: 119 doi: 10.1016/j.msea.2018.05.080
    [64] Sun H L, Li D D, Diao Y P, et al. Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Mater Charact, 2022, 188: 111885 doi: 10.1016/j.matchar.2022.111885
    [65] Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying. Mater Lett, 2022, 316: 132031 doi: 10.1016/j.matlet.2022.132031
    [66] Fang F, Che S F, Hou D W, et al. Thin-gauge non-oriented silicon steel with balanced magnetic and mechanical properties processed by strip casting. Mater Sci Eng A, 2022, 831: 142284 doi: 10.1016/j.msea.2021.142284
    [67] Fang F, Hou D W, Wang Z L, et al. Microstructure characteristics and strengthening behavior of Cu-bearing non-oriented silicon steel: Conventional process versus strip casting. Metals, 2021, 11(11): 1815 doi: 10.3390/met11111815
    [68] Hou D W, Fang F, Wang Y, et al. Nanoprecipitation behavior and resultant mechanical and magnetic properties in Fe–Si–Ni–Al–Mn high strength non-oriented silicon steel. Mater Sci Eng A, 2021, 819: 141529 doi: 10.1016/j.msea.2021.141529
    [69] Bian X H, Zeng Y P, Nan D, et al. The effect of copper precipitates on the recrystallization textures and magnetic properties of non-oriented electrical steels. J Alloys Compd, 2014, 588: 108 doi: 10.1016/j.jallcom.2013.11.010
    [70] Wu M, Zeng Y P. Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels. J Magn Magn Mater, 2015, 391: 96 doi: 10.1016/j.jmmm.2015.04.085
  • 加載中
圖(11)
計量
  • 文章訪問數:  429
  • HTML全文瀏覽量:  298
  • PDF下載量:  123
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-06
  • 網絡出版日期:  2022-10-12
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回