<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

機動車尾氣和非尾氣排放多環芳烴及其衍生物的影響因素研究進展

付家祺 王婷 毛洪鈞

付家祺, 王婷, 毛洪鈞. 機動車尾氣和非尾氣排放多環芳烴及其衍生物的影響因素研究進展[J]. 工程科學學報, 2023, 45(5): 863-873. doi: 10.13374/j.issn2095-9389.2022.08.09.002
引用本文: 付家祺, 王婷, 毛洪鈞. 機動車尾氣和非尾氣排放多環芳烴及其衍生物的影響因素研究進展[J]. 工程科學學報, 2023, 45(5): 863-873. doi: 10.13374/j.issn2095-9389.2022.08.09.002
FU Jia-qi, WANG Ting, MAO Hong-jun. Research progress on the influencing factors of polycyclic aromatic hydrocarbons and derivatives from vehicle exhaust and non-exhaust emissions[J]. Chinese Journal of Engineering, 2023, 45(5): 863-873. doi: 10.13374/j.issn2095-9389.2022.08.09.002
Citation: FU Jia-qi, WANG Ting, MAO Hong-jun. Research progress on the influencing factors of polycyclic aromatic hydrocarbons and derivatives from vehicle exhaust and non-exhaust emissions[J]. Chinese Journal of Engineering, 2023, 45(5): 863-873. doi: 10.13374/j.issn2095-9389.2022.08.09.002

機動車尾氣和非尾氣排放多環芳烴及其衍生物的影響因素研究進展

doi: 10.13374/j.issn2095-9389.2022.08.09.002
基金項目: 國家自然科學基金資助項目(42177084);天津市科技支撐重點資助項目(20YFZCSN01000);中央高校基本科研業務費資助項目(63221411)
詳細信息
    通訊作者:

    E-mail: wangting@nankai.edu.cn

  • 中圖分類號: X734.2

Research progress on the influencing factors of polycyclic aromatic hydrocarbons and derivatives from vehicle exhaust and non-exhaust emissions

More Information
  • 摘要: 機動車尾氣排放多環芳烴(PAHs)及其衍生物主要源于化石燃料的不完全燃燒,排放特征隨燃燒條件和燃料種類變化而有所不同.隨著尾氣排放控制標準日益嚴格和新能源汽車的逐漸普及,非尾氣排放污染對交通大氣污染的貢獻逐年加大.因此,包括剎車磨損、輪胎磨損、道路揚塵再懸浮和路面磨損在內的非尾氣排放過程作為城市環境PAHs的重要污染源,其占比不容忽視。機動車來源PAHs及其衍生物的排放特征主要受燃燒條件、路面條件和機動車部件材料種類等多種因素影響。本文對國內外現有的機動車尾氣排放以及非尾氣排放PAHs及其衍生物的數據進行了梳理和總結。總的來說,對于尾氣排放,嚴格的排放標準導致PAHs及其衍生物排放量降低;冷啟動、加速等工況下,發動機燃燒效率降低,排放量增大;柴油車排放量遠高于汽油車;汽油直噴發動機比氣道噴射發動機排放更高;車輛行駛里程增加排放量增加。且研究發現剎車片化學成分、制動情況、輪胎材料和路面條件等均會影響排放,具有高度的不確定性,有待進一步研究。本文旨在分析機動車來源PAHs及其衍生物在不同影響因素下的排放特征,為排放控制技術發展和政策標準制定提供科學依據。

     

  • 圖  1  不同燃料類型PAHs的環數分布及總PAHs排放因子[8,21]

    Figure  1.  Distribution of different PAHs rings and emission factors reported in the literature under different fuel types[8,21]

    圖  2  不同可再生燃料/柴油混合比PAHs的環數分布及總PAHs排放因子[1617]

    Figure  2.  Distribution of different PAHs rings and emission factors reported in the literature with diesel, biodiesel and biodiesel/n-butanol blends[1617]

    Notes: D—Diesel; Bu13—The volume fraction of 13% butanol blending with diesel; B13, B20, and B50—The volume fraction of 13%, 20%, and 50% biodiesel blending with diesel, respectively; B100—Biodiesel

    圖  3  PFI和GDI發動機的PACs的排放因子[6,13,24]

    Figure  3.  PACs emission factors reported in the literature from PFI and GDI vehicles[6,13,24]

    圖  4  不同車型的PAHs排放因子[11,14,21]

    Figure  4.  PAHs emission factors reported in the literature under different vehicle types[11,14,21]

    Notes: PCs—Passenger cars; LDVs—Light-duty vehicles; MDVs—Medium-duty vehicles; HDVs—Heavy-duty vehicles.

    表  1  不同排放標準下PAHs的環數分布及總PAHs排放因子[5,8,10]

    Table  1.   Distribution of different PAHs rings and emission factors reported in the literature under different emission standards[5,8,10]

    Test cyclesWLTC, GasolineCHTC-HT, DieselARTEMIS Urban, Gasoline
    Emission standardsChina ⅢChina ⅣChina ⅤChina ⅢChina ⅣChina ⅢChina ⅣChina Ⅴ
    PAHs at 2?3 rings4.2%4.3%4.4%80.3%100.0%99.5%100.0%100.0%
    PAHs at 4 rings27.3%25.7%25.1%19.7%BDL0.5%BDLBDL
    PAHs at 5 rings44.9%44.4%45.2%BDLBDLBDLBDLBDL
    PAHs at 6 rings23.6%25.6%25.3%BDLBDLBDLBDLBDL
    ΣPAHs emission factors/(μg·km?1)924.655794.395744.6457.12.6225.65140.5020.388
    Notes: WLTC—Worldwide harmonised light-duty vehicles test cycle; CHTC-HT—China heavy-duty commercial vehicle test cycle for heavy trucks; ARTEMIS Urban—Urban Artemis driving cycle; BDL—Below detection limit.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Patel A B, Shaikh S, Jain K R, et al. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front Microbiol, 2020, 11: 562813 doi: 10.3389/fmicb.2020.562813
    [2] Bandowe B A M, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment-A review. Sci Total Environ, 2017, 581-582: 237 doi: 10.1016/j.scitotenv.2016.12.115
    [3] Xu Y Z, Zhang J, Yuan L M, et al. Sewage treatment based on plasma technology. Res Explor Lab, 2021, 40(4): 66 doi: 10.19927/j.cnki.syyt.2021.04.016

    許允之, 章金, 袁麗梅, 等. 基于等離子體技術的污水處理. 實驗室研究與探索, 2021, 40(4):66 doi: 10.19927/j.cnki.syyt.2021.04.016
    [4] Hooftman N, Messagie M, van Mierlo J, et al. A review of the European passenger car regulations-Real driving emissions vs local air quality. Renew Sustain Energy Rev, 2018, 86: 1 doi: 10.1016/j.rser.2018.01.012
    [5] Zhao T, Yang L X, Huang Q, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles:Characterization and health risk assessment. Sci Total Environ, 2020, 727: 138631
    [6] Zheng X, Zhang S J, Wu Y, et al. Measurement of particulate polycyclic aromatic hydrocarbon emissions from gasoline light-duty passenger vehicles. J Clean Prod, 2018, 185: 797 doi: 10.1016/j.jclepro.2018.03.078
    [7] Lin Y C, Li Y C, Shangdiar S, et al. Assessment of PM2.5 and PAH content in PM2.5 emitted from mobile source gasoline-fueled vehicles in concomitant with the vehicle model and mileages. Chemosphere, 2019, 226: 502
    [8] Alves C A, Barbosa C, Rocha S, et al. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles. Environ Sci Pollut Res, 2015, 22(15): 11526 doi: 10.1007/s11356-015-4394-x
    [9] Zerboni A, Rossi T, Bengalli R, et al. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environ Pollut, 2022, 297: 118767 doi: 10.1016/j.envpol.2021.118767
    [10] Chen T, Zheng X, He X, et al. Comprehensive characterization of polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles utilizing GC × GC-ToF-MS. Sci Total Environ, 2022, 833: 155127 doi: 10.1016/j.scitotenv.2022.155127
    [11] Cao X Y, Hao X W, Shen X B, et al. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements. Atmos Environ, 2017, 148: 190 doi: 10.1016/j.atmosenv.2016.10.040
    [12] Agarwal A K, Mustafi N N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew Sustain Energy Rev, 2021, 137: 110624 doi: 10.1016/j.rser.2020.110624
    [13] Kostenidou E, Martinez-Valiente A, R'Mili B, et al. Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles. Atmos Chem Phys, 2021, 21(6): 4779 doi: 10.5194/acp-21-4779-2021
    [14] Wang B, Lau Y S, Huang Y H, et al. Chemical and toxicological characterization of particulate emissions from diesel vehicles. J Hazard Mater, 2021, 405: 124613 doi: 10.1016/j.jhazmat.2020.124613
    [15] An Y Z, Teng S P, Pei Y Q, et al. An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline. Fuel, 2016, 164: 160 doi: 10.1016/j.fuel.2015.10.007
    [16] Arias S, Molina F, Palacio R, et al. Assessment of carbonyl and PAH emissions in an automotive diesel engine fueled with butanol and renewable diesel fuel blends. Fuel, 2022, 316: 123290 doi: 10.1016/j.fuel.2022.123290
    [17] Li X L, Zheng Y, Guan C, et al. Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environ Sci Pollut Res Int, 2018, 25(34): 34131 doi: 10.1007/s11356-018-3382-3
    [18] Geldenhuys G, Wattrus M, Forbes P B C. Gas and particle phase polycyclic aromatic hydrocarbon emission factors from a diesel vehicle engine: Effect of operating modes in a developing country context. Atmos Environ X, 2022, 13: 100158
    [19] Dhital N B, Wang S X, Lee C H, et al. Effects of driving behavior on real-world emissions of particulate matter, gaseous pollutants and particle-bound PAHs for diesel trucks. Environ Pollut, 2021, 286: 117292 doi: 10.1016/j.envpol.2021.117292
    [20] Fernández-Rodríguez D, Lapuerta M, German L. Progress in the use of biobutanol blends in diesel engines. Energies, 2021, 14(11): 3215 doi: 10.3390/en14113215
    [21] Perrone M G, Carbone C, Faedo D, et al. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmos Environ, 2014, 82: 391 doi: 10.1016/j.atmosenv.2013.10.040
    [22] Wang Y H, Zheng R, Qin Y H, et al. The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel, 2016, 166: 543 doi: 10.1016/j.fuel.2015.11.019
    [23] Huang L, Bohac S V, Chernyak S M, et al. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling. Atmos Environ, 2015, 102: 228 doi: 10.1016/j.atmosenv.2014.11.046
    [24] McCaffery C, Durbin T D, Johnson K C, et al. The effect of ethanol and iso-butanol blends on polycyclic aromatic hydrocarbon (PAH) emissions from PFI and GDI vehicles. Atmos Pollut Res, 2020, 11(11): 2056 doi: 10.1016/j.apr.2020.08.024
    [25] Yilmaz N, Davis S M. Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends. Fuel, 2016, 181: 729 doi: 10.1016/j.fuel.2016.05.059
    [26] Lim C, Lee J, Hong J, et al. Evaluation of regulated and unregulated emissions from a diesel powered vehicle fueled with diesel/biodiesel blends in Korea. Energy, 2014, 77: 533 doi: 10.1016/j.energy.2014.09.040
    [27] Giechaskiel B, Joshi A, Ntziachristos L, et al. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: A review. Catalysts, 2019, 9(7): 586 doi: 10.3390/catal9070586
    [28] Raza M, Chen L F, Leach F, et al. A review of particulate number (PN) emissions from gasoline direct injection (GDI) engines and their control techniques. Energies, 2018, 11(6): 1417 doi: 10.3390/en11061417
    [29] Wang Z B, Liu P, Li H M, et al. The development of diesel particulate filter technology. IOP Conf Ser:Earth Environ Sci, 2021, 632(3): 032012 doi: 10.1088/1755-1315/632/3/032012
    [30] Zhang Z Q, Ye J D, Tan D L, et al. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel, 2021, 290: 120039 doi: 10.1016/j.fuel.2020.120039
    [31] Jang J, Lee J, Choi Y, et al. Reduction of particle emissions from gasoline vehicles with direct fuel injection systems using a gasoline particulate filter. Sci Total Environ, 2018, 644: 1418 doi: 10.1016/j.scitotenv.2018.06.362
    [32] Yang J C, Roth P, Durbin T D, et al. Gasoline particulate filters as an effective tool to reduce particulate and polycyclic aromatic hydrocarbon emissions from gasoline direct injection (GDI) vehicles: A case study with two GDI vehicles. Environ Sci Technol, 2018, 52(5): 3275 doi: 10.1021/acs.est.7b05641
    [33] Mu?oz M, Haag R, Zeyer K, et al. Effects of four prototype gasoline particle filters (GPFs) on nanoparticle and genotoxic PAH emissions of a gasoline direct injection (GDI) vehicle. Environ Sci Technol, 2018, 52(18): 10709 doi: 10.1021/acs.est.8b03125
    [34] Harrison R M, Allan J, Carruthers D, et al. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmos Environ, 2021, 262: 118592 doi: 10.1016/j.atmosenv.2021.118592
    [35] Piscitello A, Bianco C, Casasso A, et al. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci Total Environ, 2021, 766: 144440 doi: 10.1016/j.scitotenv.2020.144440
    [36] Wei L, Choy Y S, Cheung C S. A study of brake contact pairs under different friction conditions with respect to characteristics of brake pad surfaces. Tribol Int, 2019, 138: 99 doi: 10.1016/j.triboint.2019.05.016
    [37] Plachá D, Vaculík M, Mikeska M, et al. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear, 2017, 376-377: 705 doi: 10.1016/j.wear.2016.12.016
    [38] Alves C, Evtyugina M, Vicente A, et al. Organic profiles of brake wear particles. Atmos Res, 2021, 255: 105557 doi: 10.1016/j.atmosres.2021.105557
    [39] Alves C A, Vicente A M P, Calvo A I, et al. Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmos Environ, 2020, 224: 117252 doi: 10.1016/j.atmosenv.2019.117252
    [40] Wu L, Zhang X F, Men Z Y, et al. The chemical component characteristics of vehicle tire wear particles. China Environ Sci, 2020, 40(4): 1486 doi: 10.3969/j.issn.1000-6923.2020.04.013

    吳琳, 張新峰, 門正宇, 等. 機動車輪胎磨損顆粒物化學組分特征研究. 中國環境科學, 2020, 40(4):1486 doi: 10.3969/j.issn.1000-6923.2020.04.013
    [41] Sadiktsis I, Bergvall C, Johansson C, et al. Automobile tires-a potential source of highly carcinogenic dibenzopyrenes to the environment. Environ Sci Technol, 2012, 46(6): 3326 doi: 10.1021/es204257d
    [42] Aatmeeyata, Sharma M. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear. Sci Total Environ, 2010, 408(20): 4563 doi: 10.1016/j.scitotenv.2010.06.011
    [43] Kreider M L, Panko J M, McAtee B L, et al. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci Total Environ, 2010, 408(3): 652 doi: 10.1016/j.scitotenv.2009.10.016
    [44] Fussell J C, Franklin M, Green D C, et al. A review of road traffic-derived non-exhaust particles: Emissions, physicochemical characteristics, health risks, and mitigation measures. Environ Sci Technol, 2022, 56(11): 6813 doi: 10.1021/acs.est.2c01072
    [45] Alves C A, Evtyugina M, Vicente A M P, et al. Chemical profiling of PM10 from urban road dust. Sci Total Environ, 2018, 634: 41 doi: 10.1016/j.scitotenv.2018.03.338
    [46] Demir T, Karaka? D, Yenisoy-Karaka? S. Source identification of exhaust and non-exhaust traffic emissions through the elemental carbon fractions and Positive Matrix Factorization method. Environ Res, 2022, 204: 112399 doi: 10.1016/j.envres.2021.112399
  • 加載中
圖(4) / 表(1)
計量
  • 文章訪問數:  457
  • HTML全文瀏覽量:  217
  • PDF下載量:  94
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-08-09
  • 網絡出版日期:  2022-10-10
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回