-
摘要: 邊坡巖體在地震、長期降雨或施工擾動等影響因素的強烈作用下,穩定巖體逐漸演化成危巖體,基巖開始分離而導致穩定性不斷下降,隨之發生下滑破壞,是威脅工程施工運維安全的主要隱患之一。單一的穩定性系數只能判斷破壞是否發生,而無法識別巖體由穩定階段至分離階段這一變化,也就難以實現危巖體的定量力學判識。通過引入黏結穩定性系數,對潛在滑動面黏聚力及其抗滑占比進行了分析,以期實現滑移型危巖體穩定階段、分離階段和破壞階段的動態考量。當黏結穩定性系數小于1,黏聚力抗滑占比小于結構面長期強度與破壞強度的比值時,即可判定為危巖體。實驗結果得出,單一的穩定性系數無法有效識別A8危巖體,而黏結穩定性系數的引入則從力學角度實現了A8危巖體的定量評價。此外現場案例研究表明,基于雙力學指標的滑移型危巖體判識方法可以提供相對客觀統一的判識結果,有效區分了重慶三峽等地區穩定性系數在1.2附近的滑移型危巖體,提高了傳統力學識別方法的準確率與科學性,為我國地質災害高風險地區更好地應對滑移型崩塌災害提供新的技術支持。Abstract: With the in-depth deployment of China’s “Belt and Road Initiative” and other major strategies, major national strategic projects, such as the Sichuan–Tibet Railway, will be built in mountain valleys with complex terrain. Under the influence of continuous external factors (rainfall, earthquake, construction, etc.), rock masses of a high-steep rock slope in a stable state gradually transform to unstable rock, and then the unstable rock slides and destroys, which is a major hidden danger threatening the safety of project construction and operation. Unfortunately, the stability factor (SF) can only identify the occurrence of failure and cannot identify the transition of stable to unstable rock; thus, it cannot quantitatively identify unstable sliding rocks. Rock mass failures mostly evolve from unstable rocks. Therefore, how to establish a quantitative evaluation method to identify unstable sliding rock masses is a major problem in the field of early warning and prevention of rock collapse. In this study, the potential sliding surface cohesion and its slip resistance share are analyzed by introducing a cohesive stability factor (CSF) to achieve dynamic consideration of the stability, separation, and damage phases of slip-type rock masses. When the CSF is <1 and the ratio of cohesion to skid resistance (η) drops below the ratio of long-term strength to failure strength, the sliding rock masses become unstable. Among them, the CSF is the main control indicator, and η is the auxiliary indicator. The laboratory experimental results of sliding unstable rock mass show that a single SF cannot accurately identify the A8 unstable rock mass in the experimental group quantitatively because of the inconsistency of the standard, and a quantitative identification method of unstable rock masses based on the CSF and SF can scientifically realize the quantitative evaluation of unstable rock masses in terms of mechanics. The field case study shows that the improved method provides relatively objective judgment criteria for the quantitative identification of unstable sliding rock masses with an SF of ~1.2 in the Chongqing Three Gorges and other regions. Compared with the traditional mechanical identification methods of unstable rock masses, the new identification method proposed in this study can conduct a set of objective and unified identification criteria, which improves the accuracy and scientificalness of the traditional mechanical identification methods and provides an effective reference for better management of rockslides in high-risk areas.
-
表 1 基于SF與CSF滑移型危巖體定量識別方法
Table 1. Quantitative identification method of sliding unstable rock masses based on the SF and CSF
Stage SF CSF Type Stability stage ≥1 ≥1 Stable rock mass Separation stage ≥1 <1 Unstable rock mass Failure stages <1 <1 Collapse 表 2 基于傳統力學識別方法的評價結果
Table 2. Evaluation results based on the traditional identification method
Experiment Area/cm2 SF Type According to
hydraulic
engineeringAccording to
railway
engineeringA1 225.0 3.09 Stable Stable A2 202.5 2.83 Stable Stable A3 180.0 2.58 Stable Stable A4 157.5 2.32 Stable Stable A5 121.5 1.91 Stable Stable A6 112.5 1.81 Stable Stable A7 90.0 1.55 Stable Stable A8 67.5 1.29 Stable Unstable A9 45.0 1.03 Unstable Unstable 表 3 基于SF與CSF的雙力學指標識別方法的評價結果
Table 3. Evaluation results of the two-index identification method based on SF and CSF
Experiment SF CSF Type A1 3.09 2.57 Stable rock mass A2 2.83 2.32 Stable rock mass A3 2.58 2.06 Stable rock mass A4 2.32 1.80 Stable rock mass A5 1.91 1.39 Stable rock mass A6 1.81 1.29 Stable rock mass A7 1.55 1.03 Stable rock mass A8 1.29 0.77 Unstable rock mass A9 1.03 0.51 Unstable rock mass 表 4 WY1和WY2巖體評價結果
Table 4. Evaluation results of WY1 and WY2 rock masses
Rock mass CSF SF Evaluation type Actual type WY1 0.97 1.67 Unstable rock mass Unstable rock mass WY2 0.38 1.08 Unstable rock mass Unstable rock mass 表 5 危巖體識別指標與判識方法
Table 5. Identification index and method of unstable rock masses
Type Mechanical state CSF η Stable rock mass Stable ≥1 ≥σ∞/σ Unstable rock mass Sliding trend <1 <σ∞/σ 表 6 基于新方法的現場危巖判識結果
Table 6. Field identification results of unstable rocks based on the new method
www.77susu.com -
參考文獻
[1] Xue Y G, Kong F M, Yang W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway. Chin J Rock Mech Eng, 2020, 39(3): 445 doi: 10.13722/j.cnki.jrme.2019.0737薛翊國, 孔凡猛, 楊為民, 等. 川藏鐵路沿線主要不良地質條件與工程地質問題. 巖石力學與工程學報, 2020, 39(3):445 doi: 10.13722/j.cnki.jrme.2019.0737 [2] Peng J B, Cui P, Zhang J Q. Challenges to engineering geology of Sichuan—Tibet railway. Chin J Rock Mech Eng, 2020, 39(12): 2377 doi: 10.13722/j.cnki.jrme.2020.0446彭建兵, 崔鵬, 莊建琦, 等. 川藏鐵路對工程地質提出的挑戰. 巖石力學與工程學報, 2020, 39(12):2377 doi: 10.13722/j.cnki.jrme.2020.0446 [3] Stead D, Eberhardt E, Coggan J S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol, 2006, 83(1-3): 217 [4] Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards. Geomat Inf Sci Wuhan Univ, 2019, 44(7): 957許強, 董秀軍, 李為樂. 基于天-空-地一體化的重大地質災害隱患早期識別與監測預警. 武漢大學學報(信息科學版), 2019, 44(7):957 [5] Liu C J, Zhang S F, Ding L Q, et al. Identification of dangerous rock mass of high slope and study of anchoring method based on laser scanning. Chin J Rock Mech Eng, 2012, 31(10): 2139 doi: 10.3969/j.issn.1000-6915.2012.10.020劉昌軍, 張順福, 丁留謙, 等. 基于激光掃描的高邊坡危巖體識別及錨固方法研究. 巖石力學與工程學報, 2012, 31(10):2139 doi: 10.3969/j.issn.1000-6915.2012.10.020 [6] Ma X D, Zhou J, Zhang L Q, et al. Feature extraction and instability analysis of dangerous rock mass along highway in meizoseismal areas. Chin J Rock Mech Eng, 2022, 41(S1): 2901馬顯東, 周劍, 張路青, 等. 強震區公路沿線崩塌危巖體特征提取及失穩分析. 巖石力學與工程學報, 2022, 41(S1):2901 [7] Lauknes T R, Piyush S A, Dehls J F, et al. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ, 2010, 114(9): 2097 doi: 10.1016/j.rse.2010.04.015 [8] Yao X, Chen Y P, Liu D L, et al. Average-DInSAR method for unstable escarpments detection induced by underground coal mining. Int J Appl Earth Obs Geoinformation., 2021, 103: 102489 doi: 10.1016/j.jag.2021.102489 [9] Deane E, Macciotta R, Hendry M T, et al. Leveraging historical aerial photographs and digital photogrammetry techniques for landslide investigation—a practical perspective. Landslides, 2020, 17(8): 1989 doi: 10.1007/s10346-020-01437-z [10] Rodriguez J, Macciotta R, Hendry M T, et al. UAVs for monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms—a case study. Landslides, 2020, 17(9): 2027 doi: 10.1007/s10346-020-01416-4 [11] Cui W, Xie E F, Zhang G K, et al. Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle. Geomatics Inf Sci Wuhan Univ, 2021, 46(6): 836崔溦, 謝恩發, 張貴科, 等. 利用無人機技術的高陡邊坡孤立危巖體識別. 武漢大學學報(信息科學版), 2021, 46(6):836 [12] Pappalardo G, Mineo S, Carbone S, et al. Preliminary recognition of geohazards at the natural reserve “lachea islet and cyclop rocks” (southern Italy). Sustainability, 2021, 13(3): 1082 doi: 10.3390/su13031082 [13] Du Y, Huo L C, Xie M W, et al. Monitoring and early warning experiment of rock collapse. Chin J Theor Appl Mech, 2021, 53(4): 1212 doi: 10.6052/0459-1879-20-441杜巖, 霍磊晨, 謝謨文, 等. 危巖體崩塌災害監測預警試驗研究. 力學學報, 2021, 53(4):1212 doi: 10.6052/0459-1879-20-441 [14] Gong X W, Yi N P, Zhang X G. Discussion for the safety factor of slope project. J Guangxi Univ Nat Sci Ed, 2006, 31(3): 265 doi: 10.13624/j.cnki.issn.1001-7445.2006.03.019龔憲偉, 易念平, 張信貴. 對邊坡工程安全系數的思考. 廣西大學學報(自然科學版), 2006, 31(3):265 doi: 10.13624/j.cnki.issn.1001-7445.2006.03.019 [15] Yue Z Q, Xu Q. Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes. Chin J Geotech Eng, 2014, 36(9): 1601 doi: 10.11779/CJGE201409005岳中琦, 徐前. 現今斜坡工程安全設計理論的根本缺陷與災難后果. 巖土工程學報, 2014, 36(9):1601 doi: 10.11779/CJGE201409005 [16] Chen C, Xie M W, Jiang Y J, et al. A new method for quantitative identification of potential landslide. Soils Found, 2021, 61(5): 1475 doi: 10.1016/j.sandf.2021.07.004 [17] Kumar N, Verma A K, Sardana S, et al. Comparative analysis of limit equilibrium and numerical methods for prediction of a landslide. Bull Eng Geol Environ, 2018, 77(2): 595 doi: 10.1007/s10064-017-1183-4 [18] Gao Q, Xue G L, Yang Z Q, et al. Study of the equivalent identification of rock mass mechanical parameters and numerical simulation of the slope stability. J China Univ Min Technol, 2015, 44(3): 423 doi: 10.13247/j.cnki.jcumt.000324高謙, 薛改利, 楊志強, 等. 等效巖體力學參數識別及邊坡穩定性數值模擬研究. 中國礦業大學學報, 2015, 44(3):423 doi: 10.13247/j.cnki.jcumt.000324 [19] Du Y, Xie M W, Jiang Y J, et al. A new method for landslide safety assessments based on natural vibration frequency. Chin J Eng, 2015, 37(9): 1118杜巖, 謝謨文, 蔣宇靜, 等. 基于固有振動頻率的滑坡安全評價新方法. 工程科學學報, 2015, 37(9):1118 [20] Du Y, Xie M W, Jiang Y J, et al. Review on the formation mechanism and early warning of rock colapse. Met Mine, 2021(1): 106 doi: 10.19614/j.cnki.jsks.202101008杜巖, 謝謨文, 蔣宇靜, 等. 巖體崩塌災害成因機制與早期預警研究綜述. 金屬礦山, 2021(1):106 doi: 10.19614/j.cnki.jsks.202101008 [21] Bonilla-Sierra V, Scholtès L, Donzé F V, et al. Rock slope stability analysis using photogrammetric data and DFN–DEM modelling. Acta Geotech, 2015, 10(4): 497 doi: 10.1007/s11440-015-0374-z [22] He S M, Wu Y, Li X P. Collapse mechanism of danger rock triggered by earthquake. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 3359何思明, 吳永, 李新坡. 地震誘發巖體崩塌的力學機制. 巖石力學與工程學報, 2010, 29(增刊 1):3359 [23] Li Y, Utili S, Milledge D, et al. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow moving Liangshuijing landslide. Eng Geol, 2021, 281: 105977 doi: 10.1016/j.enggeo.2020.105977 [24] Du Y, Xie M W, Jiang Y J, et al. Experimental rock stability assessment using the frozen-thawing test. Rock Mech Rock Eng, 2017, 50(4): 1049 doi: 10.1007/s00603-016-1138-2 [25] Chen G Q, Huang R Q, Shi Y C, et al. Stability analysis of slope based on dynamic and whole strength reduction methods. Chin J Rock Mech Eng, 2014, 33(2): 243 doi: 10.13722/j.cnki.jrme.2014.02.002陳國慶, 黃潤秋, 石豫川, 等. 基于動態和整體強度折減法的邊坡穩定性分析. 巖石力學與工程學報, 2014, 33(2):243 doi: 10.13722/j.cnki.jrme.2014.02.002 [26] Lv F X, Xie M W, Du Y, et al. Stability identification of slope based on the change of anti-sliding force. Sci Technol Eng, 2019, 19(14): 309 doi: 10.3969/j.issn.1671-1815.2019.14.046呂夫俠, 謝謨文, 杜巖, 等. 基于抗滑力變化的邊坡穩定狀態識別. 科學技術與工程, 2019, 19(14):309 doi: 10.3969/j.issn.1671-1815.2019.14.046 [27] Duncan J M. Factors of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng, 2000, 126(4): 307 doi: 10.1061/(ASCE)1090-0241(2000)126:4(307) [28] Du Y, Yan E C, Cai J S, et al. Reliability analysis method on unstable rock mass controlled by discontinuous structure. J Harbin Inst Technol, 2019, 51(8): 120 doi: 10.11918/j.issn.0367-6234.201805025杜毅, 晏鄂川, 蔡靜森, 等. 斷續結構面控制的危巖穩定可靠度分析方法. 哈爾濱工業大學學報, 2019, 51(8):120 doi: 10.11918/j.issn.0367-6234.201805025 [29] Liu X, Hua X Z, Huang Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves. Chin J Rock Mech Eng, 2021, 40(10): 2003 doi: 10.13722/j.cnki.jrme.2021.0395劉嘯, 華心祝, 黃志國, 等. 應力波作用下含大型結構面巖體垮塌動力失穩機制. 巖石力學與工程學報, 2021, 40(10):2003 doi: 10.13722/j.cnki.jrme.2021.0395 [30] Xue H B, Dang F N, Yin X T, et al. Research on non-proportional double safety factors of slope based on strength reserve. Rock Soil Mech, 2016, 37(4): 929 doi: 10.16285/j.rsm.2016.04.003薛海斌, 黨發寧, 尹小濤, 等. 基于強度儲備的邊坡非等比例雙安全系數研究. 巖土力學, 2016, 37(4):929 doi: 10.16285/j.rsm.2016.04.003 [31] Zhang Q Y, Yang W D, Chen F, et al. Long-term strength and microscopic failure mechanism of hard brittle rocks. Chin J Geotech Eng, 2011, 33(12): 1910張強勇, 楊文東, 陳芳, 等. 硬脆性巖石的流變長期強度及細觀破裂機制分析研究. 巖土工程學報, 2011, 33(12):1910 [32] Weiss J, Pellissier V, Marsan D, et al. Cohesion versus friction in controlling the long-term strength of a self-healing experimental fault. J Geophys Res-Solid Earth, 2016, 121(12): 8523 doi: 10.1002/2016JB013110 [33] Yang J H, Dai J H, Yao C, et al. Weakening laws of rock mass properties in blasting excavation damage zone of high rock slopes. Chin J Geotech Eng, 2020, 42(5): 968楊建華, 代金豪, 姚池, 等. 巖石高邊坡爆破開挖損傷區巖體力學參數弱化規律研究. 巖土工程學報, 2020, 42(5):968 [34] Sun C T. Study on Calculation Menthod of Dangerous Rock Stability in Three Gorges Reservoir Area [Dissertation]. Chengdu: Southwest Jiaotong University, 2016孫彩婷. 三峽庫區危巖穩定性計算方法研究[學位論文]. 成都: 西南交通大學, 2016 [35] Jia Y C, Xie M W, Chang S X, et al. A model for evaluation of stability of sliding-and falling-type dangerous rock blocks based on natural vibration frequency. Rock Soil Mech, 2017, 38(7): 2149 doi: 10.16285/j.rsm.2017.07.039賈艷昌, 謝謨文, 昌圣翔, 等. 基于固有振動頻率的滑移式和墜落式危巖塊體穩定性評價模型研究. 巖土力學, 2017, 38(7):2149 doi: 10.16285/j.rsm.2017.07.039 [36] Xu B. Study on Deformation and Instability Characteristics and Sliding Model of Creeping Landslide [Dissertation]. Beijing: University of Science and Technology Beijing, 2017許波. 蠕動型滑坡變形失穩特征及滑動模型研究[學位論文]. 北京: 北京科技大學, 2017 [37] Li T. Stability Analysis of Dangerous Rocks and Research on Prevention Methods [Dissertation]. Nanning: Guangxi University, 2017李拓. 危巖穩定性分析及防治方法研究[學位論文]. 南寧: 廣西大學, 2017 [38] Du Y, Lu Y D, Xie M W, et al. Measurement of rock bridge length of unstable rock based on laser Doppler vibrometer. J China Coal Soc, 2019, 44(Suppl 2): 560 doi: 10.13225/j.cnki.jccs.2019.0776杜巖, 陸永都, 謝謨文, 等. 基于激光多普勒測振的危巖體巖橋長度測量. 煤炭學報, 2019, 44(增刊 2):560 doi: 10.13225/j.cnki.jccs.2019.0776 [39] Jia B N, Wu Z X, Du Y. Real-time stability assessment of unstable rocks based on fundamental natural frequency. Int J Rock Mech Min Sci, 2019, 124: 104134 doi: 10.1016/j.ijrmms.2019.104134