<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種滑移型危巖體的力學判識方法

李恒 杜巖 謝謨文 張金戈 蔣宇靜 李博

李恒, 杜巖, 謝謨文, 張金戈, 蔣宇靜, 李博. 一種滑移型危巖體的力學判識方法[J]. 工程科學學報, 2023, 45(9): 1441-1449. doi: 10.13374/j.issn2095-9389.2022.08.04.003
引用本文: 李恒, 杜巖, 謝謨文, 張金戈, 蔣宇靜, 李博. 一種滑移型危巖體的力學判識方法[J]. 工程科學學報, 2023, 45(9): 1441-1449. doi: 10.13374/j.issn2095-9389.2022.08.04.003
LI Heng, DU Yan, XIE Mowen, ZHANG Jinge, JIANG Yujing, LI Bo. A new quantitative identification method for an unstable sliding rock mass[J]. Chinese Journal of Engineering, 2023, 45(9): 1441-1449. doi: 10.13374/j.issn2095-9389.2022.08.04.003
Citation: LI Heng, DU Yan, XIE Mowen, ZHANG Jinge, JIANG Yujing, LI Bo. A new quantitative identification method for an unstable sliding rock mass[J]. Chinese Journal of Engineering, 2023, 45(9): 1441-1449. doi: 10.13374/j.issn2095-9389.2022.08.04.003

一種滑移型危巖體的力學判識方法

doi: 10.13374/j.issn2095-9389.2022.08.04.003
基金項目: 國家自然科學基金資助項目(41572274);國家自然科學基金青年基金資助項目(41702371);地表過程與資源生態國家重點實驗室開放課題(2022-KF-01);深部煤礦采動響應與災害防控國家重點實驗室開發基金課題(SKLMRDPC22KF13)
詳細信息
    通訊作者:

    E-mail: mutulei@163.com

  • 中圖分類號: TU45

A new quantitative identification method for an unstable sliding rock mass

More Information
  • 摘要: 邊坡巖體在地震、長期降雨或施工擾動等影響因素的強烈作用下,穩定巖體逐漸演化成危巖體,基巖開始分離而導致穩定性不斷下降,隨之發生下滑破壞,是威脅工程施工運維安全的主要隱患之一。單一的穩定性系數只能判斷破壞是否發生,而無法識別巖體由穩定階段至分離階段這一變化,也就難以實現危巖體的定量力學判識。通過引入黏結穩定性系數,對潛在滑動面黏聚力及其抗滑占比進行了分析,以期實現滑移型危巖體穩定階段、分離階段和破壞階段的動態考量。當黏結穩定性系數小于1,黏聚力抗滑占比小于結構面長期強度與破壞強度的比值時,即可判定為危巖體。實驗結果得出,單一的穩定性系數無法有效識別A8危巖體,而黏結穩定性系數的引入則從力學角度實現了A8危巖體的定量評價。此外現場案例研究表明,基于雙力學指標的滑移型危巖體判識方法可以提供相對客觀統一的判識結果,有效區分了重慶三峽等地區穩定性系數在1.2附近的滑移型危巖體,提高了傳統力學識別方法的準確率與科學性,為我國地質災害高風險地區更好地應對滑移型崩塌災害提供新的技術支持。

     

  • 圖  1  滑移型巖體孕育崩塌全過程

    Figure  1.  Whole process of rock mass sliding

    圖  2  模型實驗示意圖

    Figure  2.  Experimental model

    圖  3  不同穩定程度實驗模型

    Figure  3.  Experimental models with different stability

    圖  4  危巖體照片及其赤平投影圖. (a) WY1危巖體; (b) WY2危巖體

    Figure  4.  Photographs and stereograms of unstable rock masses: (a) WY1 unstable rock mass; (b) WY2 unstable rock mass

    圖  5  試驗案例的黏聚力抗滑占比與穩定性系數下降量對比

    Figure  5.  Comparison of the ratio of cohesion to skid resistance and stability coefficient decline in the test cases

    圖  6  試驗案例的黏聚力抗滑占比指標

    Figure  6.  Ratio of cohesion to skid resistance in the test cases

    表  1  基于SF與CSF滑移型危巖體定量識別方法

    Table  1.   Quantitative identification method of sliding unstable rock masses based on the SF and CSF

    StageSFCSFType
    Stability stage≥1≥1Stable rock mass
    Separation stage≥1<1Unstable rock mass
    Failure stages<1<1Collapse
    下載: 導出CSV

    表  2  基于傳統力學識別方法的評價結果

    Table  2.   Evaluation results based on the traditional identification method    

    ExperimentArea/cm2SFType
    According to
    hydraulic
    engineering
    According to
    railway
    engineering
    A1225.03.09StableStable
    A2202.52.83StableStable
    A3180.02.58StableStable
    A4157.52.32StableStable
    A5121.51.91StableStable
    A6112.51.81StableStable
    A790.01.55StableStable
    A867.51.29StableUnstable
    A945.01.03UnstableUnstable
    下載: 導出CSV

    表  3  基于SF與CSF的雙力學指標識別方法的評價結果

    Table  3.   Evaluation results of the two-index identification method based on SF and CSF

    ExperimentSFCSFType
    A13.092.57Stable rock mass
    A22.832.32Stable rock mass
    A32.582.06Stable rock mass
    A42.321.80Stable rock mass
    A51.911.39Stable rock mass
    A61.811.29Stable rock mass
    A71.551.03Stable rock mass
    A81.290.77Unstable rock mass
    A91.030.51Unstable rock mass
    下載: 導出CSV

    表  4  WY1和WY2巖體評價結果

    Table  4.   Evaluation results of WY1 and WY2 rock masses

    Rock massCSFSFEvaluation typeActual type
    WY10.971.67Unstable rock massUnstable rock mass
    WY20.381.08Unstable rock massUnstable rock mass
    下載: 導出CSV

    表  5  危巖體識別指標與判識方法

    Table  5.   Identification index and method of unstable rock masses

    TypeMechanical stateCSFη
    Stable rock massStable≥1σ/σ
    Unstable rock massSliding trend<1<σ/σ
    下載: 導出CSV

    表  6  基于新方法的現場危巖判識結果

    Table  6.   Field identification results of unstable rocks based on the new method

    Rock massSFCSFηEvaluation typeActual typeResult
    SX[34]1.231.100.89Stable rock massStable rock massRight
    BHP[35]1.120.400.36Unstable rock massUnstable rock massRight
    WDD[36]1.270.200.16Unstable rock massUnstable rock massRight
    DL[37]1.400.830.59Unstable rock massUnstable rock massRight
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xue Y G, Kong F M, Yang W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway. Chin J Rock Mech Eng, 2020, 39(3): 445 doi: 10.13722/j.cnki.jrme.2019.0737

    薛翊國, 孔凡猛, 楊為民, 等. 川藏鐵路沿線主要不良地質條件與工程地質問題. 巖石力學與工程學報, 2020, 39(3):445 doi: 10.13722/j.cnki.jrme.2019.0737
    [2] Peng J B, Cui P, Zhang J Q. Challenges to engineering geology of Sichuan—Tibet railway. Chin J Rock Mech Eng, 2020, 39(12): 2377 doi: 10.13722/j.cnki.jrme.2020.0446

    彭建兵, 崔鵬, 莊建琦, 等. 川藏鐵路對工程地質提出的挑戰. 巖石力學與工程學報, 2020, 39(12):2377 doi: 10.13722/j.cnki.jrme.2020.0446
    [3] Stead D, Eberhardt E, Coggan J S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol, 2006, 83(1-3): 217
    [4] Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards. Geomat Inf Sci Wuhan Univ, 2019, 44(7): 957

    許強, 董秀軍, 李為樂. 基于天-空-地一體化的重大地質災害隱患早期識別與監測預警. 武漢大學學報(信息科學版), 2019, 44(7):957
    [5] Liu C J, Zhang S F, Ding L Q, et al. Identification of dangerous rock mass of high slope and study of anchoring method based on laser scanning. Chin J Rock Mech Eng, 2012, 31(10): 2139 doi: 10.3969/j.issn.1000-6915.2012.10.020

    劉昌軍, 張順福, 丁留謙, 等. 基于激光掃描的高邊坡危巖體識別及錨固方法研究. 巖石力學與工程學報, 2012, 31(10):2139 doi: 10.3969/j.issn.1000-6915.2012.10.020
    [6] Ma X D, Zhou J, Zhang L Q, et al. Feature extraction and instability analysis of dangerous rock mass along highway in meizoseismal areas. Chin J Rock Mech Eng, 2022, 41(S1): 2901

    馬顯東, 周劍, 張路青, 等. 強震區公路沿線崩塌危巖體特征提取及失穩分析. 巖石力學與工程學報, 2022, 41(S1):2901
    [7] Lauknes T R, Piyush S A, Dehls J F, et al. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ, 2010, 114(9): 2097 doi: 10.1016/j.rse.2010.04.015
    [8] Yao X, Chen Y P, Liu D L, et al. Average-DInSAR method for unstable escarpments detection induced by underground coal mining. Int J Appl Earth Obs Geoinformation., 2021, 103: 102489 doi: 10.1016/j.jag.2021.102489
    [9] Deane E, Macciotta R, Hendry M T, et al. Leveraging historical aerial photographs and digital photogrammetry techniques for landslide investigation—a practical perspective. Landslides, 2020, 17(8): 1989 doi: 10.1007/s10346-020-01437-z
    [10] Rodriguez J, Macciotta R, Hendry M T, et al. UAVs for monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms—a case study. Landslides, 2020, 17(9): 2027 doi: 10.1007/s10346-020-01416-4
    [11] Cui W, Xie E F, Zhang G K, et al. Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle. Geomatics Inf Sci Wuhan Univ, 2021, 46(6): 836

    崔溦, 謝恩發, 張貴科, 等. 利用無人機技術的高陡邊坡孤立危巖體識別. 武漢大學學報(信息科學版), 2021, 46(6):836
    [12] Pappalardo G, Mineo S, Carbone S, et al. Preliminary recognition of geohazards at the natural reserve “lachea islet and cyclop rocks” (southern Italy). Sustainability, 2021, 13(3): 1082 doi: 10.3390/su13031082
    [13] Du Y, Huo L C, Xie M W, et al. Monitoring and early warning experiment of rock collapse. Chin J Theor Appl Mech, 2021, 53(4): 1212 doi: 10.6052/0459-1879-20-441

    杜巖, 霍磊晨, 謝謨文, 等. 危巖體崩塌災害監測預警試驗研究. 力學學報, 2021, 53(4):1212 doi: 10.6052/0459-1879-20-441
    [14] Gong X W, Yi N P, Zhang X G. Discussion for the safety factor of slope project. J Guangxi Univ Nat Sci Ed, 2006, 31(3): 265 doi: 10.13624/j.cnki.issn.1001-7445.2006.03.019

    龔憲偉, 易念平, 張信貴. 對邊坡工程安全系數的思考. 廣西大學學報(自然科學版), 2006, 31(3):265 doi: 10.13624/j.cnki.issn.1001-7445.2006.03.019
    [15] Yue Z Q, Xu Q. Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes. Chin J Geotech Eng, 2014, 36(9): 1601 doi: 10.11779/CJGE201409005

    岳中琦, 徐前. 現今斜坡工程安全設計理論的根本缺陷與災難后果. 巖土工程學報, 2014, 36(9):1601 doi: 10.11779/CJGE201409005
    [16] Chen C, Xie M W, Jiang Y J, et al. A new method for quantitative identification of potential landslide. Soils Found, 2021, 61(5): 1475 doi: 10.1016/j.sandf.2021.07.004
    [17] Kumar N, Verma A K, Sardana S, et al. Comparative analysis of limit equilibrium and numerical methods for prediction of a landslide. Bull Eng Geol Environ, 2018, 77(2): 595 doi: 10.1007/s10064-017-1183-4
    [18] Gao Q, Xue G L, Yang Z Q, et al. Study of the equivalent identification of rock mass mechanical parameters and numerical simulation of the slope stability. J China Univ Min Technol, 2015, 44(3): 423 doi: 10.13247/j.cnki.jcumt.000324

    高謙, 薛改利, 楊志強, 等. 等效巖體力學參數識別及邊坡穩定性數值模擬研究. 中國礦業大學學報, 2015, 44(3):423 doi: 10.13247/j.cnki.jcumt.000324
    [19] Du Y, Xie M W, Jiang Y J, et al. A new method for landslide safety assessments based on natural vibration frequency. Chin J Eng, 2015, 37(9): 1118

    杜巖, 謝謨文, 蔣宇靜, 等. 基于固有振動頻率的滑坡安全評價新方法. 工程科學學報, 2015, 37(9):1118
    [20] Du Y, Xie M W, Jiang Y J, et al. Review on the formation mechanism and early warning of rock colapse. Met Mine, 2021(1): 106 doi: 10.19614/j.cnki.jsks.202101008

    杜巖, 謝謨文, 蔣宇靜, 等. 巖體崩塌災害成因機制與早期預警研究綜述. 金屬礦山, 2021(1):106 doi: 10.19614/j.cnki.jsks.202101008
    [21] Bonilla-Sierra V, Scholtès L, Donzé F V, et al. Rock slope stability analysis using photogrammetric data and DFN–DEM modelling. Acta Geotech, 2015, 10(4): 497 doi: 10.1007/s11440-015-0374-z
    [22] He S M, Wu Y, Li X P. Collapse mechanism of danger rock triggered by earthquake. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 3359

    何思明, 吳永, 李新坡. 地震誘發巖體崩塌的力學機制. 巖石力學與工程學報, 2010, 29(增刊 1):3359
    [23] Li Y, Utili S, Milledge D, et al. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow moving Liangshuijing landslide. Eng Geol, 2021, 281: 105977 doi: 10.1016/j.enggeo.2020.105977
    [24] Du Y, Xie M W, Jiang Y J, et al. Experimental rock stability assessment using the frozen-thawing test. Rock Mech Rock Eng, 2017, 50(4): 1049 doi: 10.1007/s00603-016-1138-2
    [25] Chen G Q, Huang R Q, Shi Y C, et al. Stability analysis of slope based on dynamic and whole strength reduction methods. Chin J Rock Mech Eng, 2014, 33(2): 243 doi: 10.13722/j.cnki.jrme.2014.02.002

    陳國慶, 黃潤秋, 石豫川, 等. 基于動態和整體強度折減法的邊坡穩定性分析. 巖石力學與工程學報, 2014, 33(2):243 doi: 10.13722/j.cnki.jrme.2014.02.002
    [26] Lv F X, Xie M W, Du Y, et al. Stability identification of slope based on the change of anti-sliding force. Sci Technol Eng, 2019, 19(14): 309 doi: 10.3969/j.issn.1671-1815.2019.14.046

    呂夫俠, 謝謨文, 杜巖, 等. 基于抗滑力變化的邊坡穩定狀態識別. 科學技術與工程, 2019, 19(14):309 doi: 10.3969/j.issn.1671-1815.2019.14.046
    [27] Duncan J M. Factors of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng, 2000, 126(4): 307 doi: 10.1061/(ASCE)1090-0241(2000)126:4(307)
    [28] Du Y, Yan E C, Cai J S, et al. Reliability analysis method on unstable rock mass controlled by discontinuous structure. J Harbin Inst Technol, 2019, 51(8): 120 doi: 10.11918/j.issn.0367-6234.201805025

    杜毅, 晏鄂川, 蔡靜森, 等. 斷續結構面控制的危巖穩定可靠度分析方法. 哈爾濱工業大學學報, 2019, 51(8):120 doi: 10.11918/j.issn.0367-6234.201805025
    [29] Liu X, Hua X Z, Huang Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves. Chin J Rock Mech Eng, 2021, 40(10): 2003 doi: 10.13722/j.cnki.jrme.2021.0395

    劉嘯, 華心祝, 黃志國, 等. 應力波作用下含大型結構面巖體垮塌動力失穩機制. 巖石力學與工程學報, 2021, 40(10):2003 doi: 10.13722/j.cnki.jrme.2021.0395
    [30] Xue H B, Dang F N, Yin X T, et al. Research on non-proportional double safety factors of slope based on strength reserve. Rock Soil Mech, 2016, 37(4): 929 doi: 10.16285/j.rsm.2016.04.003

    薛海斌, 黨發寧, 尹小濤, 等. 基于強度儲備的邊坡非等比例雙安全系數研究. 巖土力學, 2016, 37(4):929 doi: 10.16285/j.rsm.2016.04.003
    [31] Zhang Q Y, Yang W D, Chen F, et al. Long-term strength and microscopic failure mechanism of hard brittle rocks. Chin J Geotech Eng, 2011, 33(12): 1910

    張強勇, 楊文東, 陳芳, 等. 硬脆性巖石的流變長期強度及細觀破裂機制分析研究. 巖土工程學報, 2011, 33(12):1910
    [32] Weiss J, Pellissier V, Marsan D, et al. Cohesion versus friction in controlling the long-term strength of a self-healing experimental fault. J Geophys Res-Solid Earth, 2016, 121(12): 8523 doi: 10.1002/2016JB013110
    [33] Yang J H, Dai J H, Yao C, et al. Weakening laws of rock mass properties in blasting excavation damage zone of high rock slopes. Chin J Geotech Eng, 2020, 42(5): 968

    楊建華, 代金豪, 姚池, 等. 巖石高邊坡爆破開挖損傷區巖體力學參數弱化規律研究. 巖土工程學報, 2020, 42(5):968
    [34] Sun C T. Study on Calculation Menthod of Dangerous Rock Stability in Three Gorges Reservoir Area [Dissertation]. Chengdu: Southwest Jiaotong University, 2016

    孫彩婷. 三峽庫區危巖穩定性計算方法研究[學位論文]. 成都: 西南交通大學, 2016
    [35] Jia Y C, Xie M W, Chang S X, et al. A model for evaluation of stability of sliding-and falling-type dangerous rock blocks based on natural vibration frequency. Rock Soil Mech, 2017, 38(7): 2149 doi: 10.16285/j.rsm.2017.07.039

    賈艷昌, 謝謨文, 昌圣翔, 等. 基于固有振動頻率的滑移式和墜落式危巖塊體穩定性評價模型研究. 巖土力學, 2017, 38(7):2149 doi: 10.16285/j.rsm.2017.07.039
    [36] Xu B. Study on Deformation and Instability Characteristics and Sliding Model of Creeping Landslide [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    許波. 蠕動型滑坡變形失穩特征及滑動模型研究[學位論文]. 北京: 北京科技大學, 2017
    [37] Li T. Stability Analysis of Dangerous Rocks and Research on Prevention Methods [Dissertation]. Nanning: Guangxi University, 2017

    李拓. 危巖穩定性分析及防治方法研究[學位論文]. 南寧: 廣西大學, 2017
    [38] Du Y, Lu Y D, Xie M W, et al. Measurement of rock bridge length of unstable rock based on laser Doppler vibrometer. J China Coal Soc, 2019, 44(Suppl 2): 560 doi: 10.13225/j.cnki.jccs.2019.0776

    杜巖, 陸永都, 謝謨文, 等. 基于激光多普勒測振的危巖體巖橋長度測量. 煤炭學報, 2019, 44(增刊 2):560 doi: 10.13225/j.cnki.jccs.2019.0776
    [39] Jia B N, Wu Z X, Du Y. Real-time stability assessment of unstable rocks based on fundamental natural frequency. Int J Rock Mech Min Sci, 2019, 124: 104134 doi: 10.1016/j.ijrmms.2019.104134
  • 加載中
圖(6) / 表(6)
計量
  • 文章訪問數:  408
  • HTML全文瀏覽量:  104
  • PDF下載量:  99
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-08-04
  • 網絡出版日期:  2022-10-11
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回