<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

硫氨酯捕收劑的制備及浮選性能

馬鑫 曹占芳 王帥 黃小平 鐘宏

馬鑫, 曹占芳, 王帥, 黃小平, 鐘宏. 硫氨酯捕收劑的制備及浮選性能[J]. 工程科學學報, 2023, 45(8): 1254-1263. doi: 10.13374/j.issn2095-9389.2022.04.30.003
引用本文: 馬鑫, 曹占芳, 王帥, 黃小平, 鐘宏. 硫氨酯捕收劑的制備及浮選性能[J]. 工程科學學報, 2023, 45(8): 1254-1263. doi: 10.13374/j.issn2095-9389.2022.04.30.003
MA Xin, CAO Zhan-fang, WANG Shuai, HUANG Xiao-ping, ZHONG Hong. Preparation and flotation performance of thionocarbamates[J]. Chinese Journal of Engineering, 2023, 45(8): 1254-1263. doi: 10.13374/j.issn2095-9389.2022.04.30.003
Citation: MA Xin, CAO Zhan-fang, WANG Shuai, HUANG Xiao-ping, ZHONG Hong. Preparation and flotation performance of thionocarbamates[J]. Chinese Journal of Engineering, 2023, 45(8): 1254-1263. doi: 10.13374/j.issn2095-9389.2022.04.30.003

硫氨酯捕收劑的制備及浮選性能

doi: 10.13374/j.issn2095-9389.2022.04.30.003
基金項目: 國家自然科學基金資助項目(52074354)
詳細信息
    通訊作者:

    E-mail: zhongh@csu.edu.cn

  • 中圖分類號: TD952

Preparation and flotation performance of thionocarbamates

More Information
  • 摘要: 為解決硫氨酯捕收劑制備過程中副產品處理困難、存在污染等問題,設計了四種新工藝制備乙硫氨酯(IPETC),分別聯產對叔丁基芐基硫醇(BBSH)、芐基三硫代碳酸鹽(BTTC)、芐硫基乙基黃藥(SBEX)、二芐基二硫醚。在優化的合成工藝條件下,合成IPETC聯產BBSH,得到含IPETC和BBSH的復合捕收劑,其中IPETC的質量分數為51%,BBSH的質量分數為41%,IPETC和BBSH的收率達到95%;合成IPETC聯產BTTC,IPETC和BTTC的收率分別達到94%和95%,純度分別為91%和82%;合成IPETC聯產SBEX,IPETC的收率和純度分別達到89%和95%,SBEX的收率和純度分別為93%和91%;合成IPETC聯產二芐基二硫醚,IPETC的收率和純度分別達到93%和92%,二芐基二硫醚的收率和純度分別達到95%和94%。考察了制備的復合捕收劑(IPETC與BBSH)對銅鉬礦的浮選性能,結果表明,復合捕收劑對銅鉬礦表現出良好的捕收性能。聯產的新型捕收劑SBEX、BTTC對黃銅礦的捕收力略強于異丁基黃藥,對黃鐵礦具有較好的選擇性,可替代異丁基黃藥浮選硫化銅礦。紅外光譜和X射線光電子能譜分析結果表明,SBEX、BTTC與黃銅礦作用時,捕收劑分子中的C=S和C—S與礦物表面的金屬Cu作用,生成捕收劑與銅的表面絡合物吸附在黃銅礦的表面。

     

  • 圖  1  單礦物的XRD圖譜. (a)黃銅礦; (b)黃鐵礦

    Figure  1.  XRD patterns of single minerals: (a) chalcopyrite; (b) pyrite

    圖  2  合成IPETC與BBSH

    Figure  2.  Synthesis route of IPETC and BBSH

    圖  3  合成IPETC與BTTC

    Figure  3.  Synthesis route of IPETC and BTTC

    圖  4  合成IPETC與二芐基二硫醚

    Figure  4.  Synthesis route of IPETC and benzyl disulfide

    圖  5  合成IPETC與SBEX

    Figure  5.  Synthesis route of IPETC and SBEX

    圖  6  合成產物的質譜圖. (a) IPETC; (b) BBSH; (c)二芐基二硫醚; (d) SBEX

    Figure  6.  Mass spectra of the synthesized products: (a) IPETC; (b) BBSH; (c) benzyl disulfide; (d) SBEX

    圖  7  合成產物的紅外光譜圖. (a) IPETC; (b) BBSH; (c) BTTC; (d)二芐基二硫醚; (e) SBEX

    Figure  7.  FTIR spectra of the synthesized products: (a) IPETC; (b) BBSH; (c) BTTC; (d) benzyl disulfide; (e) SBEX

    圖  8  不同礦漿pH和捕收劑用量下的黃銅礦浮選回收率. (a)礦漿pH; (b)捕收劑用量

    Figure  8.  Recovery of chalcopyrite flotation under different pulp pH and collector concentration: (a) pulp pH; (b) collector concentration

    圖  9  不同礦漿pH和捕收劑用量下的黃鐵礦浮選回收率. (a)礦漿pH; (b)捕收劑用量

    Figure  9.  Recovery of pyrite flotation under different pulp pH and collector concentration: (a) pulp pH; (b) collector concentration

    圖  10  SBEX、黃銅礦、與SBEX作用后的黃銅礦的紅外光譜圖[14]

    Figure  10.  FTIR spectra of SBEX and chalcopyrite before and after interaction with SBEX[14]

    圖  11  BTTC、黃銅礦、與BTTC作用后的黃銅礦的紅外光譜圖[13]

    Figure  11.  FTIR spectra of BTTC and chalcopyrite before and after interaction with BTTC[13]

    圖  12  SBEX、與SBEX作用前后的黃銅礦的XPS精細譜圖[14]. (a) Cu 2p; (b) S 2p

    Figure  12.  High-resolution XPS spectra[14]: (a) Cu 2p; (b) S 2p

    ①—chalcopyrite; ②—SBEX; ③—SBEX treated chalcopyrite

    圖  13  BTTC、與BTTC作用前后的黃銅礦XPS精細譜圖[13]. (a) Cu 2p; (b) S 2p

    Figure  13.  High-resolution XPS spectra[13]: (a) Cu 2p; (b) S 2p

    ①—BTTC treated chalcopyrite; ②—chalcopyrite; ③—BTTC

    表  1  捕收劑對內蒙古某銅鉬礦的一次粗選實驗結果

    Table  1.   Flotation conditions and results of copper-molybdenum ore from Inner Mongolia Copper-Molybdenum Mine

    EntryReagents and their dosages/(g·t?1)ProductsYield/%Grade/%Recovery/%
    CuMoCuMo
    1Composite collector, 24
    Pine oil, 24
    Concentrates5.643.990.4476.0870.90
    Tailings94.360.0750.01123.9229.10
    Feed100.000.2960.035100.00100.00
    2IPETC 24
    Pine oil, 24
    Concentrates6.073.690.2974.9160.70
    Tailings93.930.080.01225.0939.30
    Feed100.000.2990.029100.00100.00
    3BBSH, 24
    Pine oil, 24
    Concentrates6.983.110.3172.1169.80
    Tailings93.020.090.01027.8930.20
    Feed100.000.3010.031100.00100.00
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Bu Y J, Hu Y H, Sun W, et al. Fundamental flotation behaviors of chalcopyrite and galena using O-isopropyl-N-ethyl thionocarbamate as a collector. Minerals, 2018, 8(3): 115 doi: 10.3390/min8030115
    [2] Fischback B C, Harris G H. Process for the Manufacture of Dialkyl Thionocarbamates: US Patent, 2691635. 1954-10-12
    [3] Hamm P C. Destroying Vegetation with Haloalkenyl Disubstituted Thionocarbamates: US Patent, 3224864. 1965-12-21
    [4] Bishop M D, Gray L A. Catalytic Synthesis of Thionocarbamates from Xanthates and Amines: US Patent, 5041599. 1991-08-20
    [5] Dai H Y, Wang M J. Process of Preparing Ethyl Ammonia Sulfate: China Patent, 96110154. 1998-01-14

    戴洪義, 王美君. 乙硫氨酯制備的新工藝: 中國專利, 96110154. 1998-01-14
    [6] Lewellyn M E. Process for the Preparation of N-Allyl-O-Alkyl Thionocarbamates: US Patent, 4482500. 1984-11-13
    [7] Luan H L, Yao W, Wu R C. Prepn of Thioamino-Formates Compounds: China Patent, 96106463. 1997-07-09

    欒和林, 姚文, 武榮成. 一種硫代胺基甲酸酯類化合物的制備方法: 中國專利, 96106463. 1997-07-09
    [8] Xu Q H. Experimental study on extraction process of recovery of thioglycolic acid from the sulfur ammonia ester solution. Shandong Chem Ind, 2015, 44(12): 10

    徐慶華. 從硫氨酯尾液中回收巰基乙酸萃取工藝的實驗研究. 山東化工, 2015, 44(12):10
    [9] Wan S H, Liu G Y, Wang D T, et al. Compounding process of thioglycolic acid using as depressant against copper sulfides. Copp Eng, 2006(4): 68

    萬盛輝, 劉廣義, 王德庭, 等. 銅抑制劑巰基乙酸的合成工藝. 銅業工程, 2006(4):68
    [10] Li H, Liu G Y. A novel method for the preparation of thionocarbamate. Fine Chem Intermed, 2022, 52(1): 56

    李華, 劉廣義. 硫代氨基甲酸酯制備新工藝研究. 精細化工中間體, 2022, 52(1):56
    [11] Zhong H, Ma X, Wang S, et al. Method for Preparing Thionocarbamate and Trithiocarbonate: China Patent, 201610801951. 2017-02-08

    鐘宏, 馬鑫, 王帥, 等. 一種制備硫氨酯并聯產三硫代碳酸鹽的方法: 中國專利, 201610801951. 2017-02-08
    [12] Zhong H, Ma X, Wang S, et al. Method for Producing Thionocarbamate and Dibenzyl Disulfide: China Patent, 201610801983. 2017-02-08

    鐘宏, 馬鑫, 王帥, 等. 一種制備硫氨酯并聯產二芐基二硫醚的方法: 中國專利, 201610801983. 2017-02-08
    [13] Ma X, Wang S, Zhong H. Sodium benzyl trithiocarbonate synthesis and flotation performance to chalcopyrite. Chin J Nonferrous Met, 2018, 28(5): 1067

    馬鑫, 王帥, 鐘宏. 芐基三硫代碳酸鈉的合成及其對黃銅礦的浮選性能. 中國有色金屬學報, 2018, 28(5):1067
    [14] Huang X P, Jia Y, Wang S, et al. Novel sodium O-benzythioethyl xanthate surfactant: Synthesis, DFT calculation and adsorption mechanism on chalcopyrite surface. Langmuir, 2019, 35(47): 15106 doi: 10.1021/acs.langmuir.9b03118
    [15] Zhong H, Huang X P, Wang S, et al. Method for Preparing Thionocarbamates and Co-producing 2-mercaptoethanol or O-alkylthioethyl Xanthogenate: China Patent, 201810519232. 2018-09-25

    鐘宏, 黃小平, 王帥, 等. 一種制備硫氨酯并聯產2-巰基乙醇或O-烷硫基乙基黃原酸鹽的方法: 中國專利, 201810519232. 2018-09-25
    [16] Xiao J J, Liu G Y, Zhong H. The adsorption mechanism of N-butoxypropyl-S-[2-(hydroxyimino) propyl] dithiocarbamate ester to copper minerals flotation. Int J Miner Process, 2017, 166: 53 doi: 10.1016/j.minpro.2017.07.003
    [17] Andrew F P, Ajibade P A. Synthesis, characterization and anticancer studies of bis-(N-methyl-1-phenyldithiocarbamato) Cu(II), Zn(II), and Pt(II) complexes: Single crystal X-ray structure of the copper complex. J Coord Chem, 2018, 71(16-18): 2776 doi: 10.1080/00958972.2018.1489537
    [18] Suyantara G P W, Hirajima T, Miki H, et al. Selective flotation of chalcopyrite and molybdenite using H2O2 oxidation method with the addition of ferrous sulfate. Miner Eng, 2018, 122: 312 doi: 10.1016/j.mineng.2018.02.005
    [19] Du M M, Zhang Y Q, Hussain I, et al. Effect of pyrite on enhancement of zero-valent iron corrosion for arsenic removal in water: A mechanistic study. Chemosphere, 2019, 233: 744 doi: 10.1016/j.chemosphere.2019.05.197
    [20] Makhlouf M M, Radwan A S, Ghazal B. Experimental and DFT insights into molecular structure and optical properties of new chalcones as promising photosensitizers towards solar cell applications. Appl Surf Sci, 2018, 452: 337 doi: 10.1016/j.apsusc.2018.05.007
    [21] Liu S, Xie L, Liu G Y, et al. Hetero-difunctional reagent with superior flotation performance to chalcopyrite and the associated surface interaction mechanism. Langmuir, 2019, 35(12): 4353 doi: 10.1021/acs.langmuir.9b00156
    [22] Yin Z G, Hu Y H, Sun W, et al. Adsorption mechanism of 4-amino-5-mercapto-1, 2, 4-triazole as flotation reagent on chalcopyrite. Langmuir, 2018, 34(13): 4071 doi: 10.1021/acs.langmuir.7b03975
    [23] Liu S, Zhong H, Liu G Y, et al. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N, N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation. J Colloid Interface Sci, 2018, 512: 701 doi: 10.1016/j.jcis.2017.10.063
    [24] Deng T, Yu S, Lotter N O, et al. Laboratory testwork of mixed xanthates for the raglan ore // Proceedings of Canadian Mineral Processors. Ottawa, 2010, 1: 253
    [25] Liu G Y, Qiu Z H, Wang J Y, et al. Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS. J Colloid Interface Sci, 2015, 437: 42 doi: 10.1016/j.jcis.2014.08.069
    [26] Smart R S C. Surface layers in base metal sulphide flotation. Miner Eng, 1991, 4(7-11): 891 doi: 10.1016/0892-6875(91)90072-4
    [27] McIntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem, 1975, 47(13): 2208 doi: 10.1021/ac60363a034
    [28] Szargan R, Schaufu? A, Ro?bach P. XPS investigation of chemical states in monolayers: Recent progress in adsorbate redox chemistry on sulphides. J Electron Spectrosc Relat Phenom, 1999, 100(1-3): 357 doi: 10.1016/S0368-2048(99)00055-9
    [29] Beattie D A, Kempson I M, Fan L J, et al. Synchrotron XPS studies of collector adsorption and co-adsorption on gold and gold: Silver alloy surfaces. Int J Miner Process, 2009, 92(3-4): 162 doi: 10.1016/j.minpro.2009.03.009
    [30] Acres R G, Harmer S L, Beattie D A. Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite. Miner Eng, 2010, 23(11-13): 928 doi: 10.1016/j.mineng.2010.03.007
    [31] Fairthorne G, Fornasiero D, Ralston J. Effect of oxidation on the collectorless flotation of chalcopyrite. Int J Miner Process, 1997, 49(1-2): 31 doi: 10.1016/S0301-7516(96)00039-7
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  348
  • HTML全文瀏覽量:  153
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-30
  • 網絡出版日期:  2022-10-10
  • 刊出日期:  2023-08-25

目錄

    /

    返回文章
    返回