<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

低功耗微熱板ZnO甲烷傳感器仿真及性能研究

李加明 焦明之 錢晨

李加明, 焦明之, 錢晨. 低功耗微熱板ZnO甲烷傳感器仿真及性能研究[J]. 工程科學學報, 2023, 45(6): 987-994. doi: 10.13374/j.issn2095-9389.2022.04.10.002
引用本文: 李加明, 焦明之, 錢晨. 低功耗微熱板ZnO甲烷傳感器仿真及性能研究[J]. 工程科學學報, 2023, 45(6): 987-994. doi: 10.13374/j.issn2095-9389.2022.04.10.002
LI Jia-ming, JIAO Ming-zhi, QIAN Chen. Simulation and performance study of low-power magnetron sputtered ZnO methane sensor[J]. Chinese Journal of Engineering, 2023, 45(6): 987-994. doi: 10.13374/j.issn2095-9389.2022.04.10.002
Citation: LI Jia-ming, JIAO Ming-zhi, QIAN Chen. Simulation and performance study of low-power magnetron sputtered ZnO methane sensor[J]. Chinese Journal of Engineering, 2023, 45(6): 987-994. doi: 10.13374/j.issn2095-9389.2022.04.10.002

低功耗微熱板ZnO甲烷傳感器仿真及性能研究

doi: 10.13374/j.issn2095-9389.2022.04.10.002
基金項目: 國家自然科學基金資助項目(52174222);中央高校基本科研業務費專項資金資助項目(2020QN69);國家自然科學基金青年基金資助項目(62204260)
詳細信息
    通訊作者:

    E-mail: mingzhijiao@cumt.edu.cn

  • 中圖分類號: TG712

Simulation and performance study of low-power magnetron sputtered ZnO methane sensor

More Information
  • 摘要: 隨著微機電系統(MEMS)的發展,運用該技術的半導體傳感器也跟著迅速發展,逐漸走向微型化、集成化和智能化。基于MEMS的微加熱板(MHP)的金屬氧化物甲烷傳感器具有功耗小、響應快等優點,廣泛應用于甲烷檢測。其中,氧化鋅(ZnO)甲烷敏感材料因其靈敏度高、中毒效應小、工作溫度低等優點,廣受關注。但是,該敏感材料制備的傳感器響應性能依然受加熱溫度及熱量分布的強烈影響。使用有限元分析(FEA)軟件COMSOL中的Multiphysics模塊對物理場中的溫度進行仿真分析與比較,揭示了在相同工作條件下加熱電極結構對溫度分布的影響,優選的微加熱板達到300 ℃時需要75 mW左右的功率。在商用微加熱板的叉指電極上采用無遮擋全表面濺射氧化鋅敏感材料構建ZnO薄膜甲烷傳感器,并使用合肥微納公司HIS9010測試了氣體傳感器的響應。采用靜態測量的方法向1 L的氣體腔內注射甲烷氣體,經過測試,與現在不同形貌的ZnO相比,本課題組使用的磁控濺射制備的氧化鋅薄膜氣體傳感器,在(1000~10000)×10?6甲烷濃度區間內響應線性度比較好,對濃度為10000×10?6的甲烷響應值達到了30。與國內外商用甲烷傳感器的甲烷響應性能進行了對比,結果表明本課題組制作傳感器響應更高,更具有應用優勢。

     

  • 圖  1  傳感器圖示. (a) 傳感器掃描電鏡圖; (b)傳感器裸芯片細節示意圖

    Figure  1.  Images of sensor: (a) scanning electron microscope image of sensor chip; (b) details of the sensor schematic

    圖  2  蛇形加熱板寬度W與間距d

    Figure  2.  Serpentine heating plate width W and spacing d

    圖  3  不同結構氣體傳感器芯片溫度仿真結果圖. (a) 結構1; (b) 結構2

    Figure  3.  Simulation result graph of gas sensor chip temperature with different structures: (a) stucture 1; (b) stucture 2

    圖  4  不同微加熱器板結構在不同加熱電壓下的溫度. (a) 結構1; (b) 結構2

    Figure  4.  Temperature distribution of different heating voltages for different structures: (a) structures 1; (b) structure 2

    圖  5  制作傳感器所用磁控濺射儀器及濺射流程圖. (a) 磁控濺射儀; (b) 磁控濺射流程圖

    Figure  5.  Magnetron sputtering instrument and flowchart for making sensor: (a) magnetron sputterer used; (b) magnetron sputtering flowchart

    圖  6  傳感器表征圖. (a) SEM圖; (b) EDS分布數據; (c)EDS元素分布

    Figure  6.  Characterization diagram of sensor: (a) SEM; (b) EDS distribution data; (c) EDS elemental distribution

    圖  7  HIS9010氣體傳感器測試儀器

    Figure  7.  HIS9010 model gas sensor test instrument

    圖  8  不同加熱電壓ZnO微熱板傳感器響應. (a) 加熱電壓1.2 V; (b) 加熱電壓1.8V; (c) 加熱電壓2.2 V

    Figure  8.  Response to ZnO MHP sensor at different heating voltage: (a) heating voltage of 1.2 V; (b) heating voltage of 1.8 V; (c) heating voltage of 2.2 V

    圖  9  傳感器在不同氣氛中的表面電子能級示意圖. (a) 空氣中; (b) 還原性氣體中

    Figure  9.  The surface electron energy diagram of sensor under different gas atomspheres: (a) in air; (b) sensor in reducing gas

    表  1  微加熱板底座及加熱板尺寸

    Table  1.   MHP base and heating plate dimensions

    Structure attributeSpecification
    Silicon substrateSubstrate size 1 mm× 1 mm× 0.5 mm
    Width of platinum heating resistance 1Width is 12 mm; interval is 10 mm;
    thickness is 300 nm
    Width of platinum heating resistance 2Platinum heaters with unequal width. Adjacent spacing is 9 mm; thickness is 300 nm
    The resistivity of the heating resistance0.0019 K?1
    下載: 導出CSV

    表  2  甲烷響應對比

    Table  2.   Comparison of methane responses

    Preparation methodMethane concentration / 10?6SReferences
    Preparation of ZnO graded structure by hydrothermal method10002.5[26]
    ZnO was modified by drop coating with palladium500020[27]
    ZnO was modified by g-C3N41000029[28]
    Zhengzhou Winsen Electronics Technology Co., Ltd MP-4100010[9]
    FIGARO TGS38701000019[13]
    Magnetron sputtering ZnO films1000/5000/1000012/21/30This work
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang X L, Ji Z G, Xie Y T, et al. Present situation and development trend of gas emission prediction technology in coal face. Sci Technol Eng, 2019, 19(33): 1 doi: 10.3969/j.issn.1671-1815.2019.33.001

    王曉蕾, 姬治崗, 謝怡婷, 等. 采煤工作面瓦斯涌出量預測技術現狀及發展趨勢. 科學技術與工程, 2019, 19(33):1 doi: 10.3969/j.issn.1671-1815.2019.33.001
    [2] Zhang T, Zhang Y J, Chang Y R, et al. Methodology of methane emission accounting in petrochemical and chemical industries of China. IOP Conf Ser Earth Environ Sci, 2019, 398(1): 012011 doi: 10.1088/1755-1315/398/1/012011
    [3] Jiao M Z. Microfabricated Gas Sensors Based on Hydrothermally Grown 1-D ZnO Nanostructures [Dissertation]. Uppsala: Uppsala University, 2017
    [4] Ahmad Y H, Mohamed A T, Al-qaradawi S Y. Exploring halloysite nanotubes as catalyst support for methane combustion: influence of support pretreatment. Appl CIay Sci, 2021, 201: 105956
    [5] Sha M L, Ma X H, Li N, et al. Dynamical properties of a room temperature ionic liquid: Using molecular dynamics simulations to implement a dynamic ion cage model. J Chem Phys, 2019, 151(15): 154502 doi: 10.1063/1.5126231
    [6] Mirzaei A, Leonardi S G, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram Int, 2016, 42(14): 15119 doi: 10.1016/j.ceramint.2016.06.145
    [7] Zong X H. Research on Gas Sensor Based on Semiconductor Metal Oxide Nanomaterials [Dissertation]. Shenyang: Liaoning University, 2021

    宗肖航. 基于半導體金屬氧化物納米材料的氣體傳感器研究[學位論文]. 沈陽: 遼寧大學, 2021
    [8] Wang Y, Sun X Y, Cao J L. Enhanced methane sensing performance of Ag modified In2O3 microspheres. J Alloys Compd, 2022, 895: 162557 doi: 10.1016/j.jallcom.2021.162557
    [9] Wu Y, Yuan L J, Hua Z Q, et al. Structure optimization of heating plate for MOS gas sensor. Instrum Tech Sens, 2019(10): 12 doi: 10.3969/j.issn.1002-1841.2019.10.004

    武一, 苑麗靜, 花中秋, 等. MOS型氣體傳感器加熱板的結構優化. 儀表技術與傳感器, 2019(10):12 doi: 10.3969/j.issn.1002-1841.2019.10.004
    [10] Wang H B. Research progress of low power methane sensor. Ind Mine Autom, 2021, 47(5): 16

    王海波. 低功耗甲烷傳感器研究進展. 工礦自動化, 2021, 47(5):16
    [11] Guo L F, Xu L, Xu Z K, et al. Design and fabrication of micro-nano fusion gas sensor based on two-beam micro-hotplatform. Microsyst Technol, 2017, 23(7): 2699 doi: 10.1007/s00542-016-3091-0
    [12] Dong S L, Duan S H, Yang Q, et al. MEMS-based smart gas metering for Internet of Things. IEEE Internet Things J, 2017, 4(5): 1296 doi: 10.1109/JIOT.2017.2676678
    [13] Xie D C. Study on Low Power Consumption and Array of MEMS MOS Gas Sensors [Dissertation]. Hefei: University of Science and Technology of China, 2021

    謝東成. MEMS MOS氣體傳感器的低功耗及陣列化研究[學位論文]. 合肥: 中國科學技術大學, 2021
    [14] Peng S F, Xie D C, Wang J, et al. Integration of SnO2 nanoparticles with micro-hot platform for low-power-consumption gas sensors. Sens Mater, 2018, 30(11): 2679
    [15] Wang Y, Meng X N, Cao J L. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J Hazard Mater, 2020, 381: 120944 doi: 10.1016/j.jhazmat.2019.120944
    [16] Yu J, Tang Z A, Yan G Z, et al. An experimental study on micro-gas sensors with strip shape tin oxide thin films. Sens Actuat B Chem, 2009, 139(2): 346 doi: 10.1016/j.snb.2009.03.033
    [17] Bhattacharyya P, Basu P K, Mondal B, et al. A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab, 2008, 48(11-12): 1772 doi: 10.1016/j.microrel.2008.07.063
    [18] Andio M A, Browning P N, Morris P A, et al. Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens Actuat B Chem, 2012, 165(1): 13 doi: 10.1016/j.snb.2011.12.045
    [19] Marasso S L, Tommasi A, Perrone D, et al. A new method to integrate ZnO nano-tetrapods on MEMS micro-hotplates for large scale gas sensor production. Nanotechnology, 2016, 27(38): 385503 doi: 10.1088/0957-4484/27/38/385503
    [20] Zhang W S, Yuan T W, Wang X H, et al. Coal mine gases sensors with dual selectivity at variable temperatures based on a W18O49 ultra-fine nanowires/Pd@Au bimetallic nanoparticles composite. Sens Actuat B Chem, 2022, 354: 131004 doi: 10.1016/j.snb.2021.131004
    [21] Yuan Z Y, Yang F, Meng F L, et al. Research of low-power MEMS-based micro hotplates gas sensor: A review. IEEE Sens J, 2021, 21(17): 18368 doi: 10.1109/JSEN.2021.3088440
    [22] Arun K, Lekshmi M S, Suja K J. Design and simulation of ZnO based acetone gas sensor using COMSOL Multiphysics // Proceedings of 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). Noida, 2020: 659
    [23] Wu PJ, Liu WQ, Yang YL, et al. Room temperature gas sensing properties of ZnO/p-Si porous nano-film heterojunction prepared by magnetron sputtering. Electron Compon Mater, 2021, 40(12): 1184

    吳鵬舉, 劉文強, 楊瑩麗, 等. 磁控濺射制備ZnO/p-Si多孔納米薄膜異質結及其室溫氣敏特性. 電子元件與材料, 2021, 40(12):1184
    [24] He Y, Sun B Y, Jiang L, et al. Effect of Ag doping on SnO2 sensing for detecting H2S: A first-principles study. Vacuum, 2021, 194: 110587 doi: 10.1016/j.vacuum.2021.110587
    [25] Jiao M Z, Chen X Y, Hu K X, et al. Recent developments of nanomaterials-based conductive type methane sensors. Rare Met, 2021, 40(6): 1515 doi: 10.1007/s12598-020-01679-9
    [26] Yang Y Q, Wang X D, Yi G Y, et al. Hydrothermally synthesized ZnO hierarchical structure for lower concentration methane sensing. Mater Lett, 2019, 254: 242 doi: 10.1016/j.matlet.2019.07.081
    [27] Wang Y, Meng X N, Yao, M X, et al. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram Int, 2019, 45(10): 13150 doi: 10.1016/j.ceramint.2019.03.250
    [28] Li X J, Li Y W, Sun G, et al. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials, 2019, 9(5): 724 doi: 10.3390/nano9050724
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  442
  • HTML全文瀏覽量:  215
  • PDF下載量:  87
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-10
  • 網絡出版日期:  2022-08-24
  • 刊出日期:  2023-05-31

目錄

    /

    返回文章
    返回