<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

冷卻速率對δ-TRIP鋼包晶相變的影響

江亮 廖銘煜 王振東 朱鴻鑫 崔衡

江亮, 廖銘煜, 王振東, 朱鴻鑫, 崔衡. 冷卻速率對δ-TRIP鋼包晶相變的影響[J]. 工程科學學報, 2023, 45(5): 747-754. doi: 10.13374/j.issn2095-9389.2022.03.07.004
引用本文: 江亮, 廖銘煜, 王振東, 朱鴻鑫, 崔衡. 冷卻速率對δ-TRIP鋼包晶相變的影響[J]. 工程科學學報, 2023, 45(5): 747-754. doi: 10.13374/j.issn2095-9389.2022.03.07.004
JIANG Liang, LIAO Ming-yu, WANG Zhen-dong, ZHU Hong-xin, CUI Heng. Effect of cooling rate on the peritectic transformation of δ-TRIP steel[J]. Chinese Journal of Engineering, 2023, 45(5): 747-754. doi: 10.13374/j.issn2095-9389.2022.03.07.004
Citation: JIANG Liang, LIAO Ming-yu, WANG Zhen-dong, ZHU Hong-xin, CUI Heng. Effect of cooling rate on the peritectic transformation of δ-TRIP steel[J]. Chinese Journal of Engineering, 2023, 45(5): 747-754. doi: 10.13374/j.issn2095-9389.2022.03.07.004

冷卻速率對δ-TRIP鋼包晶相變的影響

doi: 10.13374/j.issn2095-9389.2022.03.07.004
基金項目: 國家自然科學基金資助項目(U1860106)
詳細信息
    通訊作者:

    E-mail: cuiheng@ustb.edu.cn

  • 中圖分類號: TG142.1

Effect of cooling rate on the peritectic transformation of δ-TRIP steel

More Information
  • 摘要: 在鋼的凝固過程中冷卻速率對鋼的相變具有不可忽視的影響。本研究采用Thermo-calc熱力學軟件,模擬計算了含Al 3.52%(質量分數)的δ鐵素體相變誘導塑性(δ-TRIP)鋼的相轉變過程,并分別使用差示掃描量熱法(DSC)和Ohnaka微觀偏析模型,分析了不同冷卻速率對3.52%Al δ-TRIP鋼凝固過程中的包晶相變溫度,以及溶質元素偏析的影響。結果表明,冷卻速率越小,DSC試驗所得的相變溫度越接近Thermo-calc計算的熱力學平衡值。隨著冷卻速率從10、30增加到50 ℃·min–1,L→L+δ的轉變溫度降低,L+δ→L+δ+γ和L+δ+γ→δ+γ的轉變溫度先降低后升高,前者主要受過冷度的影響,后者主要受元素偏析的影響。冷卻速率對C、Mn、S的偏析影響很小,對Si、P、Al的偏析影響較大,并且隨著冷卻速率的增加,Si、P、Al偏析程度增加。Si和P的偏析會小幅度延緩包晶反應的進程;Al對改變包晶反應進程作用明顯,隨著冷卻速率的增加,包晶反應區域逐漸下移,且下移趨勢漸緩。

     

  • 圖  1  DSC溫度控制示意圖

    Figure  1.  Differential scanning calorimetry temperature control schematic

    圖  2  Thermo-calc所計算的偽二元Fe–C相圖

    Figure  2.  Equilibrium phase fraction diagram of experimental steel calculated using Thermo-calc

    圖  3  Thermo-calc所計算的試驗鋼平衡相分數圖

    Figure  3.  Equilibrium phase fraction diagram of experimental steel calculated using Thermo-calc

    圖  4  不同冷卻速率下試驗鋼的DSC曲線

    Figure  4.  Differential scanning calorimetry curves of experimental steel at different cooling rates

    圖  5  吉布斯自由能和溫度的關系示意圖

    Figure  5.  Relationship between Gibbs free energy and temperature

    圖  6  不同冷卻速率下液相中各元素含量隨固相率的變化圖. (a) C; (b) Si; (c) Mn; (d) P; (e) S; (f) Al

    Figure  6.  Variation diagram of element content in the liquid phase with a solid phase rate under different cooling rates: (a) C; (b) Si; (c) Mn; (d) P; (e) S; (f) Al

    圖  7  同一冷卻速率下各元素的微觀偏析度隨固相率的變化圖. (a) 10 ℃·min–1; (b) 30 ℃·min–1; (c) 50 ℃·min–1

    Figure  7.  Variation diagram of the liquid phase content of each element with a solidification rate under different cooling rates: (a) 10 ℃·min?1; (b) 30 ℃·min?1; (c) 50 ℃·min?1

    圖  8  不同冷卻速率下最終偏析成分的偽二元Fe–C相圖

    Figure  8.  Pseudobinary Fe–C phase diagrams of the final segregation composition at different cooling rates

    圖  9  不同冷卻速率下Si、P、Al最終偏析成分的偽二元Fe–C相圖. (a) Si; (b) P; (c) Al

    Figure  9.  Pseudobinary Fe–C phase diagram of the final segregation composition of Si, P, Al, and S at different cooling rates: (a) Si; (b) P; (c) Al

    表  1  δ-TRIP鋼的化學成分(質量分數)

    Table  1.   Chemical composition of δ-TRIP steel %

    CSiMnPSONAlFe
    0.370.621.290.00700.00320.000660.000993.52Bal.
    下載: 導出CSV

    表  2  不同冷卻速率的DSC曲線上的點對應的溫度

    Table  2.   Temperature corresponding to the points on the differential scanning calorimetry curve at different cooling rates ℃

    Cooling rate/(℃·min?1)ABCDE
    101501.01497.11420.61419.61404.8
    301490.31476.91344.61343.61326.6
    501487.41471.31367.01365.01336.9
    下載: 導出CSV

    表  3  不同冷卻速率下的相轉變溫度

    Table  3.   Phase transition temperature at different cooling rates

    Phase
    transformation
    0 ℃·min?1

    (Thermo-calc)
    10 ℃·min?1

    (DSC)
    30 ℃·min?1

    (DSC)
    50 ℃·min?1

    (DSC)
    L→L+δ1503.21501.01490.31487.4
    L+δ→L+δ+γ1422.71420.61344.61367.0
    L+δ+γ→δ+γ1411.21404.81326.61336.9
    下載: 導出CSV

    表  4  不同冷卻速率下各個放熱峰單位質量的相變焓值

    Table  4.   Phase change enthalpy per unit mass of each exothermic peak at different cooling rates J·g?1

    Cooling rate/(℃·min?1)Peak 1Peak 2
    100.04180.0068
    300.04070.0048
    500.04050.0055
    下載: 導出CSV

    表  5  溶質在鐵中的平衡分配系數和擴散系數[2021]

    Table  5.   Equilibrium partition coefficient and diffusion coefficient of solutes in iron[2021]

    ElementskDS/(cm2·s?1)
    C0.190.0127Exp[–81301/(RT)]
    Si0.778.0Exp[–248710/(RT)]
    Mn0.770.76Exp[–116935/(RT)]
    P0.232.9Exp[–229900/(RT)]
    S0.054.56Exp[–214434/(RT)]
    Al0.65.9Exp[–241186/(RT)]
    Note: R—8.314 J·K?1?mol?1; T—Temperature in Kelvin.
    下載: 導出CSV

    表  6  DSC試驗得到的不同冷卻速率下的TLTS

    Table  6.   TL and TS under different cooling rates obtained from differential scanning calorimetry experiments ℃

    Cooling rate/(℃·min?1)TLTS
    101501.01404.8
    301490.31326.6
    501487.41336.9
    下載: 導出CSV

    表  7  不同冷卻速率下各元素偏析后的最終成分(質量分數)

    Table  7.   Final composition of elements after segregation at different cooling rates %

    Cooling rate/(℃·min?1)CSiMnPSAl
    101.950.871.680.0400.0756.65
    301.950.921.680.0470.0757.20
    501.950.931.680.0490.0757.33
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile. Eng Sci, 2009, 11(9): 20 doi: 10.3969/j.issn.1009-1742.2009.09.004

    馬鳴圖, 易紅亮, 路洪洲, 等. 論汽車輕量化. 中國工程科學, 2009, 11(9):20 doi: 10.3969/j.issn.1009-1742.2009.09.004
    [2] Yang Q, Wang J F, Cong Y, et al. State of knowledge on lightweight steels(Part Ⅰ)—Al-rich interstitial-free steels and ferritic lightweight steels. Baosteel Technol, 2015(3): 1 doi: 10.3969/j.issn.1008-0716.2015.03.001

    楊旗, 王俊峰, 叢郁, 等. 輕質鋼的研究進展(一)——富Al無間隙原子鋼和鐵素體輕質鋼. 寶鋼技術, 2015(3):1 doi: 10.3969/j.issn.1008-0716.2015.03.001
    [3] Yi H L, Chen P, Wang G D, et al. δ-TRIP steel: Physical and mechanical metallurgy. Eng Sci, 2014, 16(2): 18 doi: 10.3969/j.issn.1009-1742.2014.02.002

    易紅亮, 陳蓬, 王國棟, 等. δ-TRIP鋼的物理與力學冶金. 中國工程科學, 2014, 16(2):18 doi: 10.3969/j.issn.1009-1742.2014.02.002
    [4] Chatterjee S, Murugananth M, Bhadeshia H K D H. δTRIP steel. Mater Sci Technol, 2007, 23(7): 819 doi: 10.1179/174328407X179746
    [5] Xie L, Huang T L, Wang Y H, et al. Deformation induced martensitic transformation and its initial microstructure dependence in a high alloyed duplex stainless steel. Steel Res Int, 2017, 88(12): n/a
    [6] Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng A, 2019, 750: 125 doi: 10.1016/j.msea.2019.02.052
    [7] Liang J T, Zhao Z Z, Liu K, et al. Microstructure and properties of 1300-MPa grade Nb microalloying DH steel. Chin J Eng, 2021, 43(3): 392

    梁江濤, 趙征志, 劉錕, 等. 1300 MPa級Nb微合金化DH鋼的組織性能. 工程科學學報, 2021, 43(3):392
    [8] Zhang Y G, Zhao A M, Zhao Z Z, et al. Influence of alloying element on continuous cooling solid phase transformation and hardness of TRIP steels. J Shenyang Univ Technol, 2010, 32(4): 390

    張宇光, 趙愛民, 趙征志, 等. 合金元素對TRIP鋼連續冷卻固態相變和硬度的影響. 沈陽工業大學學報, 2010, 32(4):390
    [9] Bocharova E, Khlopkov K, Sebald R. Effect of microalloying elements on phase transformation, microstructure and mechanical properties in dual-phase steels. Mater Sci Forum, 2016, 879: 483 doi: 10.4028/www.scientific.net/MSF.879.483
    [10] Chen Y L, Dong C, Jiang H T, et al. Effect of aluminum and silicon on phase transformation and microstructure of quenching and partitioning steel during continuous cooling. Hot Work Technol, 2010, 39(2): 10 doi: 10.3969/j.issn.1001-3814.2010.02.004

    陳雨來, 董辰, 江海濤, 等. Si、Al元素對QP鋼連續冷卻的相變及組織影響. 熱加工工藝, 2010, 39(2):10 doi: 10.3969/j.issn.1001-3814.2010.02.004
    [11] Li D Z, Yan Z J, Wang R, et al. Effect of hot deformation processes on phase transformation of low-alloyed, multiphase, high-strength steel. Steel Res Int, 2020, 92(1): 1900522
    [12] Rodrigues D G, Maria G G B, Viana N A L, et al. Effect of low cold-rolling strain on microstructure, texture, phase transformation, and mechanical properties of 2304 lean duplex stainless steel. Mater Charact, 2019, 150: 138 doi: 10.1016/j.matchar.2019.02.011
    [13] Zhu J, Liu S, Jia W P, et al. Effect of annealing process on microstructure and properties of Ti+Nb-IF steel. Hot Work Technol, 2008, 37(22): 59 doi: 10.3969/j.issn.1001-3814.2008.22.019

    朱晶, 劉帥, 賈維平, 等. 退火工藝對Ti+Nb-IF鋼組織與性能的影響. 熱加工工藝, 2008, 37(22):59 doi: 10.3969/j.issn.1001-3814.2008.22.019
    [14] Petrovi? D S, Klan?nik G, Pirnat M, et al. Differential scanning calorimetry study of the solidification sequence of austenitic stainless steel. J Therm Anal Calorim, 2011, 105(1): 251 doi: 10.1007/s10973-011-1375-2
    [15] Raju S, Ganesh B J, Banerjee A, et al. Characterisation of thermal stability and phase transformation energetics in tempered 9Cr–1Mo steel using drop and differential scanning calorimetry. Mater Sci Eng A, 2007, 465(1-2): 29 doi: 10.1016/j.msea.2007.01.127
    [16] Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim, 2015, 119(3): 1547 doi: 10.1007/s10973-014-4302-5
    [17] Ganjehfard K, Taghiabadi R, Noghani M T, et al. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. Int J Miner Metall Mater, 2021, 28(4): 718 doi: 10.1007/s12613-020-2039-7
    [18] Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Trans Iron Steel Inst Jpn, 1986, 26(12): 1045 doi: 10.2355/isijinternational1966.26.1045
    [19] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7): 1755 doi: 10.1007/s11661-001-0152-4
    [20] Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int, 2009, 49(12): 1819 doi: 10.2355/isijinternational.49.1819
    [21] You D L, Bernhard C, Wieser G, et al. Microsegregation model with local equilibrium partition coefficients during solidification of steels. Steel Res Int, 2016, 87(7): 840 doi: 10.1002/srin.201500216
    [22] Ma Z T, Janke D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ Int, 1998, 38(1): 46 doi: 10.2355/isijinternational.38.46
    [23] Zhang X, Ma G J, Liu M K. Micro-segregation model calculation of residual tin in boiler and pressure vessel steel. Philos Mag, 2019, 99(9): 1041 doi: 10.1080/14786435.2019.1573333
  • 加載中
圖(9) / 表(7)
計量
  • 文章訪問數:  530
  • HTML全文瀏覽量:  239
  • PDF下載量:  108
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-07
  • 網絡出版日期:  2022-05-05
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回