<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于非鋁脫氧工藝的高品質軸承鋼關鍵冶金技術研究

王仲亮 包燕平 顧超 肖微 劉宇 黃永生

王仲亮, 包燕平, 顧超, 肖微, 劉宇, 黃永生. 基于非鋁脫氧工藝的高品質軸承鋼關鍵冶金技術研究[J]. 工程科學學報, 2022, 44(9): 1607-1619. doi: 10.13374/j.issn2095-9389.2022.03.07.003
引用本文: 王仲亮, 包燕平, 顧超, 肖微, 劉宇, 黃永生. 基于非鋁脫氧工藝的高品質軸承鋼關鍵冶金技術研究[J]. 工程科學學報, 2022, 44(9): 1607-1619. doi: 10.13374/j.issn2095-9389.2022.03.07.003
WANG Zhong-liang, BAO Yan-ping, GU Chao, XIAO Wei, LIU Yu, HUANG Yong-sheng. Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process[J]. Chinese Journal of Engineering, 2022, 44(9): 1607-1619. doi: 10.13374/j.issn2095-9389.2022.03.07.003
Citation: WANG Zhong-liang, BAO Yan-ping, GU Chao, XIAO Wei, LIU Yu, HUANG Yong-sheng. Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process[J]. Chinese Journal of Engineering, 2022, 44(9): 1607-1619. doi: 10.13374/j.issn2095-9389.2022.03.07.003

基于非鋁脫氧工藝的高品質軸承鋼關鍵冶金技術研究

doi: 10.13374/j.issn2095-9389.2022.03.07.003
基金項目: 國家自然科學基金資助項目 (52174297)
詳細信息
    通訊作者:

    E-mail: baoyp@ustb.edu.cn

  • 中圖分類號: TF762

Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process

More Information
  • 摘要: 我國高品質軸承鋼生產技術已取得了長足進步,部分企業的軸承鋼質量處于世界先進水平,但質量穩定性與世界領先水平仍存在一定差距。目前,國內外主要采用鋁脫氧工藝生產軸承鋼,通過鋁脫氧和造高堿度渣快速降低鋼液中氧含量,高品質軸承鋼中全氧質量分數已經可以控制在5×10?6以下,但仍存在大顆粒球狀(Ds類)類夾雜物導致疲勞失效的難題,以及超低全氧和鈦含量難以穩定控制、小方坯連鑄水口堵塞等問題。針對上述問題,本研究提出了非鋁脫氧工藝生產軸承鋼,即在轉爐出鋼時加入硅錳合金預脫氧,鋼包精煉爐(LF)向渣面加入硅質脫氧劑擴散脫氧,真空循環脫氣精煉(RH)真空深脫氧,保證鋼液全氧質量分數在8×10?6左右。在保證鋼液低鋁低鈦的同時,利用低堿度渣改變夾雜物類型,控制夾雜物塑性化,從而有效地解決鋼液流動性問題。利用超聲疲勞試驗機對兩種工藝軸承鋼疲勞壽命進行測定,闡明了不同類型夾雜物對疲勞性能的影響,剖析了不同工藝軸承鋼的疲勞斷裂機理,研究了引起疲勞裂紋的夾雜物臨界尺寸。

     

  • 圖  1  合金元素與脫氧效果關系. (a) 不同錳硅比對脫氧產物占比及活度的影響;(b) [Si]平衡鋼液中[O]質量分數變化

    Figure  1.  Relationship between alloying elements and deoxidation effect: (a) effects of different manganese–silicon ratios on the proportion and activity of each deoxidation product; (b) variation of [O] mass content in [Si] equilibrium molten steel

    圖  2  CaO?SiO2?Al2O3?12%MgO四元渣系等氧線

    Figure  2.  CaO?SiO2?Al2O3?12%MgO quaternary slag iso-oxygen line

    圖  3  非鋁脫氧生產軸承鋼LF工序. (a) 全氧含量變化; (b) 氮含量變化

    Figure  3.  LF process of nonaluminum deoxidation production of bearing steel: (a) total oxygen change; (b) nitrogen content change

    圖  4  RH精煉過程[O]遷移行為

    Figure  4.  Migration behavior of [O] during the RH refining process

    圖  5  非鋁脫氧生產軸承鋼RH工序.(a) 全氧含量變化;(b) 氮含量變化

    Figure  5.  RH process of nonaluminum deoxidation bearing steel: (a) total oxygen change; (b) nitrogen contents change

    圖  6  軸承鋼中[Ti]和[Al]s關系

    Figure  6.  Relationship between [Ti] and [Al]s in bearing steel

    圖  7  低鈦控制技術應用效果. (a) 不同工序渣中TiO2含量;(b) 有害元素含量

    Figure  7.  Application effect of low titanium control technology: (a) TiO2 content in slag of different processes;(b) content of harmful elements

    圖  8  Ds類夾雜物形成過程

    Figure  8.  Formation process of Ds inclusions

    圖  9  精煉渣成分對CaO (a) 和Al2O3 (b)活度的影響

    Figure  9.  Effects of refining slag composition on the activities of CaO (a) and Al2O3 (b)

    圖  10  鋁脫氧和非鋁脫氧軸承鋼鑄坯中各類型夾雜物分布

    Figure  10.  Distribution of various types of inclusions in aluminum and nonaluminum deoxidized bearing steel billets

    圖  11  非鋁脫氧軸承鋼冶煉過程夾雜物形貌.(a~c) 轉爐; (d~f) LF; (g~j) RH

    Figure  11.  Morphology of inclusions in the smelting process of nonaluminum bearing steel: (a–c) BOF; (d–f) LF; (g–j) RH

    圖  12  鋼液可澆性對比. (a) 非鋁脫氧工藝; (b) 低鋁脫氧工藝水口內壁結瘤情況; (c) 不同脫氧方式鋼液中夾雜物液相比例

    Figure  12.  Comparison of castability of molten steel: (a) nodulation on the inner wall of the nozzle in nonaluminum; (b) low-aluminum deoxygenation processes; (c) liquid phase ratio of inclusions with different deoxidation methods

    圖  13  超聲疲勞試驗系統工作原理示意圖

    Figure  13.  Schematic diagram of the working principle of the ultrasonic fatigue test system

    圖  14  1300 MPa下全氧含量與疲勞壽命(Nf)的關系

    Figure  14.  Relationship between total oxygen content and fatigue life (Nf) at 1300 MPa

    圖  15  脫氧方式對疲勞斷裂的影響. (a)不同氧化物夾雜對鑲嵌應力的影響;(b) 疲勞斷裂的機理;(c) 鈣鋁酸鹽類裂紋源;(d) 硅酸鹽類裂紋源[9]

    Figure  15.  Effect of deoxidation on fatigue fracture: (a) influence of different oxide inclusions on damascene stress; (b) fatigue fracture mechanism; crack initiation caused by calcium aluminate (c) and silicate(d) [9]

    圖  16  不同夾雜物造成的疲勞斷裂. (a) 門檻值; (b) 臨界尺寸

    Figure  16.  Fatigue fracture caused by different inclusions: (a) threshold value; (b) critical size

    表  1  非鋁脫氧工藝冶煉軸承鋼LF精煉渣成分(質量分數)

    Table  1.   Composition of LF refining slag for smelting bearing steel by the nonaluminum deoxidation process %

    StageCaOSiO2Al2O3MgOMnOFeOR
    After the BOF41.238.83.897.163.802.0431.06
    Start of LF refining40.939.84.057.303.741.3681.03
    LF refining
    before slagging
    48.734.83.747.730.7362.1331.40
    LF refining
    after slagging
    47.133.55.0611.30.4130.5551.41
    End of LF refining37.842.04.7112.20.8050.9000.90
    下載: 導出CSV

    表  2  非鋁脫氧工藝冶煉軸承鋼RH鋼包頂渣成分(質量分數)

    Table  2.   Composition of RH top slag smelting bearing steel by the nonaluminum deoxidation process %

    StageCaOSiO2Al2O3MgOMnOFeOR
    Start of RH37.241.74.6712.50.8591.3860.89
    End of RH37.641.84.7612.40.8820.9450.90
    下載: 導出CSV

    表  3  不同工藝下Ds類夾雜物評級

    Table  3.   Ds inclusion ratings under different processes

    GradeAluminum deoxidizedNonaluminum deoxidized
    Quantity (heats)Proportion/%Quantity (heats)Proportion/%
    Grade 021045.45 15491.67
    Grade 0.517838.53148.33
    Grade 1.06313.6400
    Grade 1.5102.1600
    Grade 2.010.2200
    下載: 導出CSV

    表  4  不同工藝下連澆爐數對比

    Table  4.   Comparison of continuous casting heats under different processes

    Deoxidization processCC heats (heats)Average (heats)Total (heats)
    Nonaluminum8–1712.8231
    Low aluminum5–107.9270
    Aluminum55
    下載: 導出CSV

    表  5  力學參數和熱物性系數

    Table  5.   Mechanical parameters and thermophysical coefficients

    Materialsα/(10?6?1)E/GPa$\upsilon $
    Silicate2.47710.21
    Calcium Aluminate5.01130.23
    Steel substrate23.02060.50
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cao W Q, Yu F, Wang C Y, et al. Status and future development of metallurgical quality and performance of bearing steels for high-end equipment. Special Steel, 2021, 42(1): 1

    曹文全, 俞峰, 王存宇, 等. 高端裝備用軸承鋼冶金質量性能現狀及未來發展方向. 特殊鋼, 2021, 42(1):1
    [2] Gu C, Wang Z L, Xiao W, et al. Research status and progress on cleanliness of high-fatigue-life bearing steels. Chin J Eng, 2021, 43(3): 299

    顧超, 王仲亮, 肖微, 等. 高疲勞壽命軸承鋼潔凈度現狀及研究進展. 工程科學學報, 2021, 43(3):299
    [3] Neishi Y, Makino T, Matsui N, et al. Influence of the inclusion shape on the rolling contact fatigue life of carburized steels. Metall Mater Trans A, 2013, 44(5): 2131 doi: 10.1007/s11661-012-1344-9
    [4] Moghaddam S M, Sadeghi F. A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue. Tribol Trans, 2016, 59(6): 1142 doi: 10.1080/10402004.2016.1141447
    [5] Hashimoto K, Fujimatsu T, Tsunekage N, et al. Effect of inclusion/matrix interface cavities on internal-fracture-type rolling contact fatigue life. Mater Des, 2011, 32(10): 4980 doi: 10.1016/j.matdes.2011.06.056
    [6] Zong N F, Huang J, Liu J, et al. Present situation and prospect of key metallurgical technologies for improving quality of bearing steel. Bearing, 2020(12): 60

    宗男夫, 黃健, 劉軍, 等. 軸承鋼質量提升的關鍵冶金技術現狀及展望. 軸承, 2020(12):60
    [7] Birat J P. Impact of steelmaking and casting technologies on processing and properties of steel. Ironmak Steelmak, 2001, 28(2): 152 doi: 10.1179/030192301677885
    [8] Liu L. Key production-technology for high-quality special steels. Iron Steel, 2018, 53(4): 1

    劉瀏. 高品質特殊鋼關鍵生產技術. 鋼鐵, 2018, 53(4):1
    [9] Xiao W, Bao Y P, Gu C, et al. Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods. Int J Miner Metall Mater, 2021, 28(5): 804 doi: 10.1007/s12613-021-2253-y
    [10] Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(Suppl 1): 31

    李明, 王新成, 段加恒, 等. 軸承鋼中D類夾雜物的形成與控制. 工程科學學報, 2018, 40(S1): 31
    [11] Gu C, Bao Y P, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime. Int J Miner Metall Mater, 2018, 25(6): 623 doi: 10.1007/s12613-018-1609-4
    [12] Kamiya T, Mizobe K, Kida K. Effect of observation position of SUJ2 bar specimens on inclusions distribution. IOP Conf Ser:Mater Sci Eng, 2018, 307: 012046 doi: 10.1088/1757-899X/307/1/012046
    [13] Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel. Metals, 2019, 9(4): 476 doi: 10.3390/met9040476
    [14] Miao X D, Yu C M, Shi C M, et al. Formation and controlling of calcium-aluminates inclusions in bearing steel. J Univ Sci Technol Beijing, 2007, 29(8): 771 doi: 10.3321/j.issn:1001-053x.2007.08.005

    繆新德, 于春梅, 石超民, 等. 軸承鋼中鈣鋁酸鹽夾雜物的形成及控制. 北京科技大學學報, 2007, 29(8):771 doi: 10.3321/j.issn:1001-053x.2007.08.005
    [15] Xiao W, Bao Y P, Wang M, et al. Inclusions evolution and control of non-aluminum deoxidized GCr15 bearing steel. Iron Steel, 2021, 56(1): 37

    肖微, 包燕平, 王敏, 等. 非鋁脫氧GCr15軸承鋼的夾雜物演變和控制. 鋼鐵, 2021, 56(1):37
    [16] Wang L F, Zhuo X J, Zhang J M, et al. Controlling inclusion composition in steelmaking process for tire cord steel. J Univ Sci Technol Beijing, 2003, 25(4): 308 doi: 10.3321/j.issn:1001-053X.2003.04.005

    王立峰, 卓曉軍, 張炯明, 等. 冶金過程中簾線鋼夾雜物成分控制. 北京科技大學學報, 2003, 25(4):308 doi: 10.3321/j.issn:1001-053X.2003.04.005
    [17] Wang X H. Iron and Steel Metallurgy: Steelmaking. Beijing: Higher Education Press, 2007

    王新華. 鋼鐵冶金: 煉鋼學. 北京: 高等教育出版社, 2007
    [18] Xu Z Y, Zhao Z W, Jiang Y J, et al. Experiment on Nb-bearing microalloyed steel made directly by Nb-bearing hot metal. Iron Steel, 2015, 50(4): 13

    徐掌印, 趙增武, 姜銀舉, 等. 含鈮鐵水直接冶煉含鈮微合金鋼的試驗. 鋼鐵, 2015, 50(4):13
    [19] Song L, Wang M, Li X, et al. Manganese migration behavior in the RH vacuum process of manganese-containing steel. Chin J Eng, 2020, 42(3): 331

    宋磊, 王敏, 李新, 等. 含錳鋼RH真空過程錳的遷移行為. 工程科學學報, 2020, 42(3):331
    [20] Ling H T, Zhang L F. A mathematical model for prediction of carbon concentration during RH refining process. Metall Mater Trans B, 2018, 49(6): 2963 doi: 10.1007/s11663-018-1403-8
    [21] Walker P F F. Improving the reliability of highly loaded rolling bearings: The effect of upstream processing on inclusions. Mater Sci Technol, 2014, 30(4): 385 doi: 10.1179/1743284713Y.0000000491
    [22] Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int J Fatigue, 2014, 64: 114 doi: 10.1016/j.ijfatigue.2014.03.003
    [23] Xie W X, Bao Y P, Wang M, et al. Relationship between high frequency defect detection and inclusions in GCr15 bearing steel. Iron Steel, 2015, 50(3): 44

    謝文新, 包燕平, 王敏, 等. GCr15軸承鋼探傷缺陷與夾雜物的關系. 鋼鐵, 2015, 50(3):44
    [24] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [25] Li L, Jiang Y, Wu J Y, et al. Formation and control of blockage at submerged nozzle of mold during GCr15 steel casting. Shanghai Met, 2020, 42(6): 35 doi: 10.3969/j.issn.1001-7208.2020.06.009

    李林, 江野, 吳建永, 等. GCr15鋼澆注過程浸入式水口結瘤的原因及控制. 上海金屬, 2020, 42(6):35 doi: 10.3969/j.issn.1001-7208.2020.06.009
    [26] Sasai K, Mizukami Y. Mechanism of alumina adhesion to continuous caster nozzle with reoxidation of molten steel. ISIJ Int, 2001, 41(11): 1331 doi: 10.2355/isijinternational.41.1331
    [27] Hua C J, Wang M, Zhang M Y, et al. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, 2021, 43(7): 925

    華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, 2021, 43(7):925
    [28] Li X S, Li N, Liu G Q, et al. Study on fatigue performance and life prediction of high strength bearing steel GCr15. China Met Equip Manuf Technol, 2020, 55(4): 141

    李新生, 李囡, 劉國強, 等. 高強軸承鋼GCr15的疲勞性能與壽命預測研究. 鍛壓裝備與制造技術, 2020, 55(4):141
    [29] Deng H P, He B L, Yu Y X, et al. Research progress of ultra-high cycle fatigue for ferrous materials. Hot Work Technol, 2017, 46(4): 6

    鄧海鵬, 何柏林, 于影霞, 等. 鋼鐵材料超高周疲勞的研究進展. 熱加工工藝, 2017, 46(4):6
    [30] Teng Z J, Wu H R, Huang Z Y, et al. Effect of mean stress in very high cycle fretting fatigue of a bearing steel. Int J Fatigue, 2021, 149: 106262 doi: 10.1016/j.ijfatigue.2021.106262
    [31] Gu C. Microstructure Fatigue Life Prediction Model Based on the Effect of Inclusions in Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    顧超. 高品質軸承鋼疲勞壽命預測模型及夾雜物影響規律研究[學位論文]. 北京: 北京科技大學, 2019
    [32] Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013, 53(3): 450 doi: 10.2355/isijinternational.53.450
    [33] Ma Y, Pan T, Jiang B, et al. Study of the effect of sulfur contents on fracture toughness of railway wheel steels for high speed train. Acta Metall Sin, 2011, 47(8): 978

    馬躍, 潘濤, 江波, 等. S含量對高速車輪鋼斷裂韌性影響的研究. 金屬學報, 2011, 47(8):978
    [34] Gu C, Lian J H, Bao Y P, et al. Numerical study of the effect of inclusions on the residual stress distribution in high-strength martensitic steels during cooling. Appl Sci, 2019, 9(3): 455 doi: 10.3390/app9030455
    [35] Gu C, Liu W Q, Lian J H, et al. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int J Miner Metall Mater, 2021, 28(5): 826 doi: 10.1007/s12613-020-2223-9
    [36] Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size. Int J Fatigue, 1989, 11(5): 299
    [37] Unal O, Maleki E, Varol R. Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel. Int J Miner Metall Mater, 2021, 28(4): 657 doi: 10.1007/s12613-020-2097-x
  • 加載中
圖(16) / 表(5)
計量
  • 文章訪問數:  2283
  • HTML全文瀏覽量:  238
  • PDF下載量:  92
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-07
  • 網絡出版日期:  2022-04-12
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回