<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Ce/Mg處理對M50軸承鋼潔凈度的影響

王禮超 田家龍 任吉 蔣成鋼 游志敏 姜周華

王禮超, 田家龍, 任吉, 蔣成鋼, 游志敏, 姜周華. Ce/Mg處理對M50軸承鋼潔凈度的影響[J]. 工程科學學報, 2022, 44(9): 1507-1515. doi: 10.13374/j.issn2095-9389.2022.01.15.001
引用本文: 王禮超, 田家龍, 任吉, 蔣成鋼, 游志敏, 姜周華. Ce/Mg處理對M50軸承鋼潔凈度的影響[J]. 工程科學學報, 2022, 44(9): 1507-1515. doi: 10.13374/j.issn2095-9389.2022.01.15.001
WANG Li-chao, TIAN Jia-long, REN Ji, JIANG Cheng-gang, YOU Zhi-min, JIANG Zhou-hua. Effect of Ce/Mg addition on the cleanliness of M50-bearing steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1507-1515. doi: 10.13374/j.issn2095-9389.2022.01.15.001
Citation: WANG Li-chao, TIAN Jia-long, REN Ji, JIANG Cheng-gang, YOU Zhi-min, JIANG Zhou-hua. Effect of Ce/Mg addition on the cleanliness of M50-bearing steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1507-1515. doi: 10.13374/j.issn2095-9389.2022.01.15.001

Ce/Mg處理對M50軸承鋼潔凈度的影響

doi: 10.13374/j.issn2095-9389.2022.01.15.001
基金項目: 國家自然科學基金資助項目(U1908223,52004059);中央高校基本科研業務專項資金資助項目(N2225009)
詳細信息
    通訊作者:

    E-mail: jiangzh@smm.neu.edu.cn

  • 中圖分類號: TF762.4

Effect of Ce/Mg addition on the cleanliness of M50-bearing steel

More Information
  • 摘要: 采用真空感應熔煉工藝冶煉航空軸承鋼M50,對比分析了Ce處理、Mg處理和Ce–Mg復合處理對氧、硫含量和夾雜物分布特征的影響,結合熱力學計算,闡明了加入Ce、Mg元素對鋼液潔凈度的影響機理。研究發現,Ce具有很強的脫氧、脫硫能力,加入Ce會優先生成Ce2O2S夾雜物,隨著鋼液中氧含量的降低,Ce還會與As等有害雜質元素結合,起到凈化鋼液的效果。過量的Ce會加劇其與鎂鋁尖晶石材質耐火材料的反應,導致鋼中夾雜物數量的增加,Ce的質量分數為0.018%時,鋼中夾雜物的尺寸和數量最小;添加Mg不僅可以脫氧、脫硫,還可以抑制Ce與鎂鋁尖晶石耐材的反應,Ce–Mg復合處理可以顯著降低鋼中的夾雜物的尺寸和數量,將鋼中的氧的質量分數降低至0.00075%。

     

  • 圖  1  鑄錠取樣位置示意圖

    Figure  1.  Schematic showing the position of sampling specimens from ingots

    圖  2  不同實驗鋼中夾雜物的形貌. (a) 0#鋼; (b) 180Ce鋼; (c) 450Ce鋼; (d) 790Ce鋼; (e) 25Mg鋼; (f) 260Ce–20Mg鋼

    Figure  2.  Optical images indicating the morphology of inclusions in experimental steels: (a) 0# steel; (b) 180Ce steel; (c) 450Ce steel; (d) 790 Ce steel; (e) 25Mg; (f) 260Ce–20Mg

    圖  3  實驗鋼中夾雜物的分布特征.(a) 平均直徑、數量密度; (b) 面積分數; (c) 尺寸分布

    Figure  3.  Statistic results of distribution characterization of inclusions in experimental steels: (a) average diameter and number density; (b) area fraction; (c) size distribution

    圖  4  實驗鋼中夾雜物的SEM照片和EDS譜圖.(a) 0#鋼; (b) 180Ce鋼; (c) 450Ce鋼; (d) 790Ce鋼; (e) 25Mg鋼; (f), (g) 260Ce–20Mg鋼

    Figure  4.  SEM morphologies and element maps of inclusions in experimental steels: (a) 0# steel; (b) 180Ce steel; (c) 450Ce steel; (d) 790 Ce steel; (e) 25Mg; (f) and (g) 260Ce–20Mg

    圖  5  M50鋼液中[O]、[S]質量分數隨[Al]、[Ce]、[Mg]質量分數的變化曲線. (a) [O]; (b) [S]

    Figure  5.  Mass fraction of [O] and [S] as a function of [Al], [Ce], [Mg] in M50 molten steel: (a) [O]; (b) [S]

    圖  6  MgO–Al2O3二元相圖

    Figure  6.  MgO–Al2O3 binary phase diagram

    圖  7  Ce/Mg處理影響鋼液潔凈度的示意圖.(a) Ce/Mg處理生成的主要夾雜物;(b) 鋼液與耐材反應過程中的溶質擴散方向

    Figure  7.  Schematics showing the effect of Ce/Mg addition on the cleanliness of molten steel: (a) main inclusion types after Ce/Mg treatment; (b) diffusion direction of solutes in molten steel during the reaction between liquid steel and refractory materials

    表  1  實驗鋼的化學成分(質量分數)

    Table  1.   Chemical compositions of experimental steels %

    SteelCMnCrMoVCeMgSAlO
    0#0.8290.2534.224.110.9330.0021<0.0100.00200
    180Ce0.8250.2584.234.110.9390.0180.00180.0100.00152
    450Ce0.8470.2584.224.140.9330.0450.00170.0130.00126
    790Ce0.8320.2564.244.140.9450.0790.00160.0150.00114
    25Mg0.8320.2554.214.070.9330.00250.00200.0130.00147
    260Ce–20Mg0.8390.2524.244.100.9320.0260.0020$\le$0.0010.0120.00075
    下載: 導出CSV

    表  2  實驗鋼中直徑大于1 μm的夾雜物類型

    Table  2.   Types of inclusions larger than 1 μm in diameter in experimental steels

    Types of inclusions0#180Ce450Ce790Ce25Mg260Ce–20Mg
    SiO2√√
    Al2O3√√
    MnS√√
    MgS√√
    Ce–S√√√√√√√√
    Ce–O–(S)√√√√√√√√
    Mg–O–(S)√√
    Ca–O–(S)
    xSiO2yAl2O3
    xAl2O3yMnS
    Mg–Al–O–(S)
    Ca–Mg–O–(S)
    Mg–Si–O–
    Ce–Al–O–
    Ce–Mg–O–(S)
    Ce–Mg–S
    Mg–Mn–S–(O)
    Ca–Si–Al–O–(S)
    Mg–Si–Al–O–(S)
    Ca–Mg–Si–Al–O–(S)
    Ce–Mg–Al–O
    Note: √√—main type of inclusions; √—a small number of inclusions.
    下載: 導出CSV

    表  3  [Ce]、[Mg]與MgO、MgAl2O4之間發生化學反應的標準吉布斯自由能

    Table  3.   Standard Gibbs free energy for the chemical reactions between [Ce], [Mg] and MgO, MgAl2O4

    Equation No.Chemical reaction equations$\Delta {G^\ominus} $ / (J?mol–1)
    (1)[Ce] + 3/2MgO (s) = 1/2Ce2O3 (s) + 3/2[Mg]$\Delta {G^\ominus_1}$ = 382720 – 179.78T
    (2)[Ce] + 1/2[S] + MgO (s) = 1/2Ce2O2S (s) + [Mg]$\Delta {G^\ominus_2} $ = 55700 – 74.18T
    (3)[Ce] + 2MgO (s) = CeO2 (s) + 2[Mg]$\Delta {G^\ominus_3} $ = 610080 – 229.4T
    (4)[Ce] + 1/2MgAl2O4 (s) = 1/2Ce2O3 (s) + [Al]+ 1/2MgO (s)$\Delta {G^\ominus_4} $ = –270360 + 74.275T
    (5)[Ce] + 1/2[S] + 1/3MgAl2O4 (s) = 1/2Ce2O2S (s) + 2/3[Al]+ 1/3MgO (s)$\Delta {G^\ominus_5} $ = –79687 + 95.19T
    (6)[Ce] + 2/3MgAl2O4 (s) = CeO2 (s) + 4/3[Al]+ 2/3MgO (s)$\Delta {G^\ominus_6} $ = –260693 + 109.34T
    (7)[Ce] + 3/8MgAl2O4 (s) = 1/2Ce2O3 (s) + 3/4[Al]+ 3/8[Mg]$\Delta {G^\ominus_7} $ = –107090 + 10.76T
    (8)[Ce] + 1/2[S] + 1/4MgAl2O4 (s) = 1/2Ce2O2S (s) + 1/2[Al]+ 1/4[Mg]$\Delta {G^\ominus_8} $ = –270840 + 52.85T
    (9)[Ce] + 1/2MgAl2O4 (s) = CeO2 (s) + [Al]+ 1/2[Mg]$\Delta {G^\ominus_9} $ = –43000 + 24.655T
    (10)[Mg] + 1/3MgAl2O4 (s) = 4/3MgO (s) + 2/3[Al]$\Delta {G^\ominus_{10}}$ = –435387 + 169.37T
    下載: 導出CSV

    表  4  溫度為1823 K時鋼液中各組元的活度相互作用系數$e^j_i$

    Table  4.   Activity interaction coefficients between various components in liquid steel at 1823 K


    j
    i
    CMnCrMoVCeMgSAlO
    Al0.00850.00330.01400.00320.0094–0.00230.00900.0306[15]0.0816–6.8289[17]
    Mn–0.0442–0.00040.0029––0.0004–0.0008–0.0091–0.04450.0067–0.0749[17]
    Ce–0.0799[17]–0.00170.0112––0.0235–0.0031[24]–0.4370–8.6746[25]–0.0138–5.2193[17]
    Mg0.0208–0.00410.0095–––0.0009–0.0743–0.2150–1.4319[26]0.0091–477.311[27]
    O–0.4669[17]–0.0218[17]–0.0415[17]0.0036[17]–0.3113[17]–0.5915[17]–311.289[27]–0.1380[17]–4.0468[17]–0.2075[17]
    S0.1141[17]–0.0260–0.01130.0028[17]–0.0166[17]–1.9819[25]–1.8885[28]–0.0291[17]0.0363[17]–0.2802[17]
    下載: 導出CSV

    表  5  溫度為1823 K時[Ce], [Mg]與耐材之間化學反應的吉布斯自由能變化量

    Table  5.   Change in Gibbs free energy for the reaction between refractory material and [Ce] or [Mg] at 1823 K J?mol–1

    ΔG0#180Ce450Ce790Ce25Mg260Ce–20Mg
    ΔG1–322933–913481–920953–926723548777–46606
    ΔG2–63997–656725–665023–670079517561–76007
    ΔG3–533374–1119939–1125271–113008562893137856
    ΔG4462006–140371–150216–156644466036–143298
    ΔG5436911–163663–172193–176952441383–161828
    ΔG6513212–89125–97621–103313518610–91066
    ΔG7265769–333651–342902–349166486719–119127
    ΔG8328477–270165–279649–285035476195–124349
    ΔG9251565–346829–354533–360006546190–58836
    ΔG10500907493061492829493127–76178–85821
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad. J Iron Steel Res, 2016, 28(3): 1 doi: 10.13228/j.boyuan.issn1001-0963.20150345

    李昭昆, 雷建中, 徐海峰, 等. 國內外軸承鋼的現狀與發展趨勢. 鋼鐵研究學報, 2016, 28(3):1 doi: 10.13228/j.boyuan.issn1001-0963.20150345
    [2] Liu Y Z, Zhou L Y, Zhang C L, et al. Development and quality control of bearing steel for heavy equipment. Iron Steel, 2013, 48(8): 1

    劉雅政, 周樂育, 張朝磊, 等. 重大裝備用高品質軸承用鋼的發展及其質量控制. 鋼鐵, 2013, 48(8):1
    [3] Jiang S F, Wang X L, Yuan Y T. Characteristics and application technology of precision machine tool bearings. Bearing, 2011(7): 57 doi: 10.3969/j.issn.1000-3762.2011.07.021

    姜韶峰, 王小龍, 袁玉同. 精密機床軸承的特點與應用技術. 軸承, 2011(7):57 doi: 10.3969/j.issn.1000-3762.2011.07.021
    [4] Ye J. The localization of high-speed railway bearings is now dawning. Machinery, 2014, 52(6): 19

    葉軍. 高速鐵路軸承國產化現曙光. 機械制造, 2014, 52(6):19
    [5] Li H W, Zhang B L, Chen L. Interview of academician Zhao Zhen-ye. Aeroengine, 2009, 35(3): 65

    李華文, 張寶玲, 陳磊. 趙振業院士訪談. 航空發動機, 2009, 35(3):65
    [6] Yong Q L, Dong H, Liu Z D, et al. Recent progress in advanced machinery structure steels. Heat Treat Met, 2010, 35(1): 2 doi: 10.13251/j.issn.0254-6051.2010.01.025

    雍岐龍, 董瀚, 劉正東, 等. 先進機械制造用結構鋼的發展. 金屬熱處理, 2010, 35(1):2 doi: 10.13251/j.issn.0254-6051.2010.01.025
    [7] Li X, Jiang Z H, Geng X, et al. Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition. ISIJ Int, 2019, 59(9): 1552 doi: 10.2355/isijinternational.ISIJINT-2019-094
    [8] Liu Y Q, Wang L J, Chou K. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths, 2014, 32(8): 759 doi: 10.1016/S1002-0721(14)60137-X
    [9] Kwon S K, Kong Y M, Park J H. Effect of Al deoxidation on the formation behavior of inclusions in Ce-added stainless steel melts. Met Mater Int, 2014, 20(5): 959 doi: 10.1007/s12540-014-5022-x
    [10] Karasev A, Suito H. Analysis of size distributions of primary oxide inclusions in Fe–10 mass Pct Ni-M (M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
    [11] Hong S H, Kang S J L, Yoon D N, et al. The reduction of the interfacial segregation of phosphorus and its embrittlement effect by lanthanum addition in a W-Ni-Fe heavy alloy. Metall Mater Trans A, 1991, 22(12): 2969 doi: 10.1007/BF02650256
    [12] Wang H P, Xiong L, Zhang L, et al. Investigation of RE-O-S-As inclusions in high carbon steels. Metall Mater Trans B, 2017, 48(6): 2849 doi: 10.1007/s11663-017-1081-y
    [13] Takata R, Yang J, Kuwabara M. Characteristics of inclusions generated during Al-Mg complex deoxidation of molten steel. ISIJ Int, 2007, 47(10): 1379 doi: 10.2355/isijinternational.47.1379
    [14] Kim H S, Chang C H, Lee H G. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels. Scr Mater, 2005, 53(11): 1253 doi: 10.1016/j.scriptamat.2005.08.001
    [15] Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel. J Mater Sci Technol, 2019, 35(7): 1298 doi: 10.1016/j.jmst.2019.01.015
    [16] Vahed A, Kay D A R. Thermodynamics of rare earths in steelmaking. Metall Mater Trans B, 1976, 7(3): 375 doi: 10.1007/BF02652708
    [17] Chen J X. Data Manual of Common Steelmaking Charts. 2nd Ed. Beijing: Metallurgical Industry Press, 2010

    陳家祥. 煉鋼常用圖表數據手冊. 2版. 北京: 冶金工業出版社, 2010
    [18] Liang Y J, Che Y C. Thermodynamic Data Handbook of Inorganic Materials. Shenyang: Northeast University Press, 1993

    梁英教, 車蔭昌. 無機物熱力學數據手冊. 沈陽: 東北大學出版社, 1993
    [19] Liu D, Lei H, Wang T L, et al. Thermodynamics of deoxidation equilibrium with Al in liquid iron at 1873 K. J Mater Metall, 2015, 14(2): 96 doi: 10.14186/j.cnki.1671-6620.2015.02.005

    劉達, 雷洪, 王天龍, 等. 關于1873K下鐵液中鋁脫氧平衡熱力學的討論. 材料與冶金學報, 2015, 14(2):96 doi: 10.14186/j.cnki.1671-6620.2015.02.005
    [20] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
    [21] Ueshima Y, Isobe K, Mizoguchi S, et al. Analysis of the rate of crystallization and precipitation of MnS in the resulphurized free-cutting steel. Tetsu-to-Hagane, 1988, 74(3): 465 doi: 10.2355/tetsutohagane1955.74.3_465
    [22] Bale C W, Chartrand P, Degterov S A, et al. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189 doi: 10.1016/S0364-5916(02)00035-4
    [23] Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016. Calphad, 2016, 54: 35 doi: 10.1016/j.calphad.2016.05.002
    [24] Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements. Mater Today Proc, 2015, 2: S300 doi: 10.1016/j.matpr.2015.05.042
    [25] Li W C, Lin Q, Ye W, et al. Thermodynamical analysis of the formation of rare earth inclusions in 35CrNi3MoV steel. J Chin Rare Earth Soc, 1984, 2(2): 57 doi: 10.3321/j.issn:1000-4343.1984.02.009

    李文超, 林勤, 葉文, 等. 35CrNi3MoV鋼中稀土夾雜物生成的熱力學計算. 中國稀土學報, 1984, 2(2):57 doi: 10.3321/j.issn:1000-4343.1984.02.009
    [26] Wu Z, Li J, Shi C B, et al. Effect of magnesium addition on inclusions in H13 die steel. Int J Miner Metall Mater, 2014, 21(11): 1062 doi: 10.1007/s12613-014-1010-x
    [27] Ohta H, Suito H. Deoxidation equilibria of calcium and magnesium in liquid iron. Metall Mater Trans B, 1997, 28(6): 1131 doi: 10.1007/s11663-997-0069-4
    [28] Nadif M, Gatellier C. Influence of calcium and magnesium on the solubility of oxygen and sulphur in liquid steel. Rev Met Paris, 1986, 83(5): 377 doi: 10.1051/metal/198683050377
  • 加載中
圖(7) / 表(5)
計量
  • 文章訪問數:  2323
  • HTML全文瀏覽量:  224
  • PDF下載量:  84
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-15
  • 網絡出版日期:  2022-04-08
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回