<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

4.3 K ~ 299 K溫區Cu-ETP熱膨脹系數原位實驗測量研究

劉文靜 張海洋 高波 鄭嘉熹 韓東旭 羅二倉 PITRE Laurent

劉文靜, 張海洋, 高波, 鄭嘉熹, 韓東旭, 羅二倉, PITRE Laurent. 4.3 K ~ 299 K溫區Cu-ETP熱膨脹系數原位實驗測量研究[J]. 工程科學學報, 2023, 45(3): 419-430. doi: 10.13374/j.issn2095-9389.2021.12.03.010
引用本文: 劉文靜, 張海洋, 高波, 鄭嘉熹, 韓東旭, 羅二倉, PITRE Laurent. 4.3 K ~ 299 K溫區Cu-ETP熱膨脹系數原位實驗測量研究[J]. 工程科學學報, 2023, 45(3): 419-430. doi: 10.13374/j.issn2095-9389.2021.12.03.010
LIU Wen-jing, ZHANG Hai-yang, GAO Bo, ZHENG Jia-xi, HAN Dong-xu, LUO Er-cang, PITRE Laurent. In situ evaluation of the linear thermal expansion coefficient of Cu-ETP from 4.3 K to 299 K[J]. Chinese Journal of Engineering, 2023, 45(3): 419-430. doi: 10.13374/j.issn2095-9389.2021.12.03.010
Citation: LIU Wen-jing, ZHANG Hai-yang, GAO Bo, ZHENG Jia-xi, HAN Dong-xu, LUO Er-cang, PITRE Laurent. In situ evaluation of the linear thermal expansion coefficient of Cu-ETP from 4.3 K to 299 K[J]. Chinese Journal of Engineering, 2023, 45(3): 419-430. doi: 10.13374/j.issn2095-9389.2021.12.03.010

4.3 K ~ 299 K溫區Cu-ETP熱膨脹系數原位實驗測量研究

doi: 10.13374/j.issn2095-9389.2021.12.03.010
基金項目: 國家自然科學基金資助項目(52006231,52125602);中國科學院重大科研儀器研制資助項目(ZDKYYQ20210001);中國科學院青年創新促進會資助項目(2022028);中國科學院理化技術研究所所長基金資助項目(E0A9T10301);中國科學院低溫工程學重點實驗室青年科技創新資助項目(CRYOQN202110)
詳細信息
    通訊作者:

    張海洋,E-mail: zhy110@mail.ipc.ac.cn

    鄭嘉熹,E-mail: jxzheng@mail.ipc.ac.cn

  • 中圖分類號: TG142.71

In situ evaluation of the linear thermal expansion coefficient of Cu-ETP from 4.3 K to 299 K

More Information
  • 摘要: 采用多模式微波諧振法,開展了定壓氣體折射率基準測溫系統中諧振腔材料電解精煉韌銅(Cu-ETP)線性熱膨脹系數的高精度原位實驗測量及其不確定度分析研究,溫度范圍為4.3~299 K。針對不同的溫度區間,采用了降溫法(5~299 K)和控溫法(4.3~26 K)兩種實驗測量方案,通過降溫法測得的線性熱膨脹系數標準不確定度優于2.2×10?7 K?1,其中,重復性是其測量不確定度的主要來源;通過控溫法測得的線性熱膨脹系數標準不確定度優于2.9×10?9 K?1,微波模式一致性和重復性是其測量不確定度的兩大主要來源。由于控溫穩定性高、微波測量噪聲低,控溫法所獲得的線性熱膨脹系數結果更為精確。最后,按照溫區范圍進一步發展了該系統內Cu-ETP材料線性熱膨脹系數的計算方程,實現了實驗數據與溫度的高精度關聯。

     

  • 圖  1  微波諧振頻率測量示意圖

    Figure  1.  The schematic of the microwave resonance frequency measurement

    圖  2  線性熱膨脹系數測量實驗系統圖

    Figure  2.  The schematic of the linear thermal expansion experiment system

    圖  3  各輪實驗的降溫過程

    Figure  3.  The cooling procedure of different runs

    圖  4  降溫過程中的諧振腔半徑計算結果分析. (a) Run9單個微波模式測得的半徑; (b) Run9單個微波模式測得的半徑與平均半徑的偏差; (c) 不同輪實驗測得的半徑平均值與最終半徑平均值的偏差(灰色背景為半徑平均值的標準不確定度誤差帶); (d) 降溫過程中最終半徑平均值的不確定度分析

    Figure  4.  Analysis of the resonator radius during cooling: (a) radius of each microwave mode of Run9; (b) deviation of the single microwave mode and the average radius of Run9; (c) radius deviation in different runs and the average value (the gray background is the error bar of the standard uncertainty in the average radius value); (d) uncertainty analysis of the final average radius during cooling

    圖  5  不同擬合階數的擬合結果. (a) 不同擬合階數下半徑實驗值與擬合值相對偏差的變化; (b) 不同擬合階數下擬合殘差標準差的變化

    Figure  5.  Fitting result of different fitting sequences: (a) deviation of the experimental and fitting values of the radius with different fitting order; (b) change of standard deviation of the fitting residual with different fitting order

    圖  6  Run9降溫過程中線性熱膨脹系數計算結果分析. (a) 各微波模式線性熱膨脹系數計算值和文獻值的偏差; (b) 不同輪實驗線性熱膨脹系數平均值與最終平均值的偏差; (c) 不同輪線性熱膨脹系數的最終平均值; (d) 線性熱膨脹系數的不確定度分析

    Figure  6.  Analysis of the linear thermal expansion during the cooling of Run9: (a) deviation of linear thermal expansion of every microwave mode and the literature value; (b) deviation of the linear thermal expansions of different runs and the final average value; (c) final average value of the linear thermal expansion of different runs; (d) uncertainty analysis of the linear thermal expansion

    圖  7  控溫過程中諧振腔半徑計算結果分析. (a) Run10控溫過程中各微波模式諧振腔半徑計算結果; (b) Run10控溫過程單個微波模式半徑和平均半徑的偏差; (c) 各輪控溫過程中半徑各模式平均值和最終平均半徑值的偏差; (d) 控溫過程中半徑的不確定度分析

    Figure  7.  Analysis of the resonator radius during temperature control: (a) resonator radii of different microwave modes in Run10; (b) deviation of single microwave mode and average radius in Run10; (c) deviation of the average radii of different modes in different runs and the final average value; (d) uncertainty analysis of the resonator radius

    圖  8  控溫過程中線性熱膨脹系數計算結果分析. (a) Run10實驗中各微波模式線性熱膨脹系數計算結果與文獻值的偏差; (b) 不同輪實驗線性熱膨脹系數平均值和最終平均值的偏差(粉色背景為平均值的標準不確定度誤差帶); (c) 多輪控溫過程中線性熱膨脹系數的最終平均值; (d) 控溫過程中線性熱膨脹系數的不確定度分量占比

    Figure  8.  Analysis of the linear thermal expansion during temperature control: (a) deviation of experiment and reported linear thermal expansion of Run10 for microwave different modes; (b) deviation of average thermal expansion for different runs and the final average value (the pink background is the error bar of the standard uncertainty of the final average value); (c) final average value of linear thermal expansion for different runs; (d) uncertainty analysis of the final linear thermal expansion

    表  1  本裝置中的儀表信息

    Table  1.   Instrument information in this cryostat

    NameBrandTypical accuracy
    Network Analyzer [32]Keysight0.5×10?6 Hz*
    2002 multimeter [33]Keithley0.0006%
    AC resistance bridge
    (ASLF900) [34]
    ASL0.01 mK
    Cernox sensor
    (CX-1050?
    CU-HT?1.4L) [35]
    Lakeshore4.2–10 K: ±5 mK
    10–20 K: ±6 mK
    20–30 K: ±9 mK
    RIRT censor
    (NPL-calibrated)—
    NPL1&NPL2 [36]
    Tinsley5 K: 0.26 mK
    26 K: 0.47 mK
    Note: *In this paper, GPS/GNSS time or frequency standard system (FS740) is used as the frequency reference, and the frequency measurement accuracy can reach the order of from 10?9 to 10?12.
    下載: 導出CSV

    表  2  5、15和24.5 K下準球形諧振腔半徑的不確定度分析

    Table  2.   Uncertainty analysis of the radius at 5, 15, and 24.5 K

    Sourceu(R) / μm
    T = 5 KT = 15 KT = 24.5 K
    Frequency fitting2.76×10?53.38×10?53.23×10?5
    Frequency stability0.0720.0660.067
    Nonideal correction0.0710.0650.066
    Mode consistency0.0580.0590.056
    Run repeatability0.00250.00270.0023
    Total uncertainty0.120.110.11
    下載: 導出CSV

    表  3  5、15和24.5 K下線性熱膨脹系數不確定度分析

    Table  3.   Uncertainty analysis of linear thermal expansion at 5, 15, and 24.5 K

    Sourceu(α) / (10?9 K?1)
    T = 5 KT = 15 KT = 24.5 K
    Frequency fitting0.0420.00470.19
    Frequency stability0.180.00320.41
    Nonideal correction0.00580.0190.029
    Mode consistency1.450.662.65
    Run repeatability0.400.200.50
    Radius fitting1.93×10?77.52×10?72.95×10?7
    Total uncertainty1.50.692.7
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Phillips W D. The end of artefacts. Nat Phys, 2019, 15(5): 518
    [2] Consultative Committee for Time and Frequency. Mise en pratique for the definition of the second in the SI [Z/OL]. Sciencepaper Online (2019-05-20) [2021-12-03].https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-second.pdf
    [3] Gaiser C, Fellmuth B, Haft N. Primary thermometry from 2.5 K to 140 K applying dielectric-constant gas thermometry. Metrologia, 2017, 54(1): 141 doi: 10.1088/1681-7575/aa5389
    [4] Pitre L, Sparasci F, Risegari L, et al. New measurement of the Boltzmann constantkby acoustic thermometry of helium-4 gas. Metrologia, 2017, 54(6): 856 doi: 10.1088/1681-7575/aa7bf5
    [5] Rourke P M C, Gaiser C, Gao B, et al. Refractive-index gas thermometry. Metrologia, 2019, 56(3): 032001 doi: 10.1088/1681-7575/ab0dbe
    [6] Gao B, Pitre L, Luo E C, et al. Feasibility of primary thermometry using refractive index measurements at a single pressure. Measurement, 2017, 103: 258 doi: 10.1016/j.measurement.2017.02.039
    [7] Simon N J, Drexler E S, Reed R P. Properties of copper and copper alloys at cryogenic temperatures [R/OL]. Sciencepaper Online (1992-02-01) [2021-12-03].https://www.osti.gov/servlets/purl/5340308
    [8] Guo Y L. CIVA Simulation and Experimental Study of Eddy Current Array Detection Aluminum Sheet [Dissertation]. Nanchang: Nanchang Hangkong University, 2014

    郭永良. 渦流陣列檢測鋁薄板的CIVA仿真與試驗研究[學位論文]. 南昌: 南昌航空大學, 2014
    [9] Mehl J B, Moldover M R, Pitre L. Designing quasi-spherical resonators for acoustic thermometry. Metrologia, 2004, 41(4): 295 doi: 10.1088/0026-1394/41/4/011
    [10] Madonna Ripa D, Imbraguglio D, Gaiser C, et al. Refractive index gas thermometry between 13.8 K and 161.4 K. Metrologia, 2021, 58(2): 025008 doi: 10.1088/1681-7575/abe249
    [11] Gaiser C, Fellmuth B. Method for extrapolating the compressibility data of solids from room to lower temperatures. Phys Status Solidi B, 2016, 253(8): 1549 doi: 10.1002/pssb.201552717
    [12] Mendes S S, Filho J C A D, Melo A R A, et al. Determination of thermal expansion coefficient of a monofilament polyamide fiber using digital image correlation. Polym Test, 2020, 87: 106540 doi: 10.1016/j.polymertesting.2020.106540
    [13] James J D, Spittle J A, Brown S R, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol, 2001, 12(3): R1 doi: 10.1088/0957-0233/12/3/201
    [14] Cooper R F. The thermal expansion of solids. Phys Educ, 1976, 11(4): 284 doi: 10.1016/S0031-8914(58)80103-2
    [15] Ventura G, Bianchini G, Gottardi E, et al. Thermal expansion and thermal conductivity of Torlon at low temperatures. Cryogenics, 1999, 39(5): 481 doi: 10.1016/S0011-2275(99)00051-X
    [16] Roth P, Gmelin E. A capacitance displacement sensor with elastic diaphragm. Rev Sci Instrum, 1992, 63(3): 2051 doi: 10.1063/1.1143165
    [17] Hamilton W O, Greene D B, Davidson D E. Thermal expansion of epoxies between 2 and 300°K. Rev Sci Instrum, 1968, 39(5): 645 doi: 10.1063/1.1683465
    [18] Smith M H. Technical literature digest. AIAA J, 1963, 1(8): 1971
    [19] Keyston J R G, MacPherson J D, Guptill E W. Coefficient of thermal expansion of Barium titanate. Rev Sci Instrum, 1959, 30(4): 246 doi: 10.1063/1.1716527
    [20] Pudalov V M, Khaikin M S. Dilatometer with a sensitivity of 10?4 angstrom. Cryogenics, 1969, 9(2): 128 doi: 10.1016/0011-2275(69)90194-5
    [21] Ewing M B, Mehl J B, Moldover M R, et al. Microwave measurements of the thermal expansion of a spherical cavity. Metrologia, 1988, 25(4): 211 doi: 10.1088/0026-1394/25/4/003
    [22] Moldover M R, Waxman M, Greenspan M. Spherical acoustic resonators for temperature and thermophysical property measurements. High Temp-High Press, 1979, 11: 75 doi: 10.1121/1.2019734
    [23] Zhang K, Feng X J, Zhang J T, et al. Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry. Meas Sci Technol, 2017, 28(1): 015006 doi: 10.1088/1361-6501/28/1/015006
    [24] Rourke P M C, Hill K D. Progress toward development of low-temperature microwave refractive index gas thermometry at NRC. Int J Thermophys, 2015, 36(2): 205
    [25] May E F, Pitre L, Mehl J B, et al. Quasi-spherical cavity resonators for metrology based on the relative dielectric permittivity of gases. Rev Sci Instrum, 2004, 75(10): 3307
    [26] Cheng Y H. Copper Electrorefining Workers (Copper Electrorefining Workers, Sulfate Workers). Beijing: Metallurgical Industry Press, 2013

    程永紅. 銅電解精煉工(銅電解工、硫酸鹽工). 北京: 冶金工業出版社, 2013
    [27] Liu W J, Pitre L, Gao B, et al. Microwave method for closure of quasi-spherical resonator // 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). Paris, 2018: 1
    [28] Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia, 1990, 27(1): 3 doi: 10.1088/0026-1394/27/1/002
    [29] Gao B, Zhang H Y, Han D X, et al. Measurement of thermodynamic temperature between 5 K and 24.5 K with single-pressure refractive-index gas thermometry. Metrologia, 2020, 57(6): 065006
    [30] Chen Y Y, Zhang H Y, Song Y N, et al. Thermal response characteristics of a SPRIGT primary thermometry system. Cryogenics, 2019, 97: 1 doi: 10.1016/j.cryogenics.2018.10.015
    [31] Hu J F, Zhang H Y, Song Y H, et al. Investigation of high-stability temperature control in primary tas thermometry. J Therm Sci, 2022, 21(3): 765 doi: 10.1016/j.scib.2018.05.023
    [32] Keysight Technologies. Overview of vector network analyzer [Z/OL]. Keysight Technologies (2021-03-17) [2021-12-03].https://www.keysight.com/cn/zh/assets/7018-01698/technical-overviews/5989-7603.pdf
    [33] Keithley. Instrument Driver Network [Z/OL]. Engineer Ambitiously (2002) [2021-12-03].https://sine.ni.com/apps/utf8/niid_web_display.model_page?p_model_id=1547
    [34] ISOTECH. F900 precision thermometry bridge—operator’s Handbook [Z/OL]. ISOTECH (2020) [2021-12-3]. http://www.isotechna.com/v/vspfiles/product_manuals/asl/F900.pdf
    [35] Lake Shore Cryotronics, Inc. Cernox®/technical-specifications [Z/OL]. Lake Shore Cryotronics (2021) [2021-12-3].https://www.lakeshore.com/products/categories/specification/temperature-products/cryogenic-temperature-sensors/cernox
    [36] Hu J F, Zhang H Y, Song Y N, et al. Investigation of high-stability temperature control in primary gas thermometry. J Therm Sci, 2022, 31(3): 765
    [37] Sutton G, Underwood R, Pitre L, et al. Acoustic resonator experiments at the triple point of water: First results for the boltzmann constant and remaining challenges. Int J Thermophys, 2010, 31(7): 1310
    [38] Underwood R J, Mehl J B, Pitre L, et al. Waveguide effects on quasispherical microwave cavity resonators. Meas Sci Technol, 2010, 21(7): 075103 doi: 10.1088/0957-0233/21/7/075103
    [39] Mehl J B. Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid II. Metrologia, 2015, 52(5): S227 doi: 10.1088/0026-1394/52/5/S227
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  510
  • HTML全文瀏覽量:  188
  • PDF下載量:  49
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-03
  • 網絡出版日期:  2022-02-15
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回