<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

脂肪酸不飽和度對低階煤浮選強化的影響機制

徐夢迪 何琳 司偉汗 包西程 劉曉康 邢耀文 桂夏輝 曹亦俊

徐夢迪, 何琳, 司偉汗, 包西程, 劉曉康, 邢耀文, 桂夏輝, 曹亦俊. 脂肪酸不飽和度對低階煤浮選強化的影響機制[J]. 工程科學學報, 2023, 45(2): 195-205. doi: 10.13374/j.issn2095-9389.2021.10.26.001
引用本文: 徐夢迪, 何琳, 司偉汗, 包西程, 劉曉康, 邢耀文, 桂夏輝, 曹亦俊. 脂肪酸不飽和度對低階煤浮選強化的影響機制[J]. 工程科學學報, 2023, 45(2): 195-205. doi: 10.13374/j.issn2095-9389.2021.10.26.001
XU Meng-di, HE Lin, SI Wei-han, BAO Xi-cheng, LIU Xiao-kang, XING Yao-wen, GUI Xia-hui, CAO Yi-jun. Influence mechanism of fatty acid unsaturation on the intensification of low-rank coal flotation[J]. Chinese Journal of Engineering, 2023, 45(2): 195-205. doi: 10.13374/j.issn2095-9389.2021.10.26.001
Citation: XU Meng-di, HE Lin, SI Wei-han, BAO Xi-cheng, LIU Xiao-kang, XING Yao-wen, GUI Xia-hui, CAO Yi-jun. Influence mechanism of fatty acid unsaturation on the intensification of low-rank coal flotation[J]. Chinese Journal of Engineering, 2023, 45(2): 195-205. doi: 10.13374/j.issn2095-9389.2021.10.26.001

脂肪酸不飽和度對低階煤浮選強化的影響機制

doi: 10.13374/j.issn2095-9389.2021.10.26.001
基金項目: 國家自然科學基金資助項目(52104277);江蘇省自然科學基金資助項目(BK20210500)
詳細信息
    通訊作者:

    徐夢迪, E-mail: cumtxmd@outlook.com

    邢耀文, E-mail: cumtxyw@126.com

  • 中圖分類號: TD923

Influence mechanism of fatty acid unsaturation on the intensification of low-rank coal flotation

More Information
  • 摘要: 為研究脂肪酸不飽和度對低階煤浮選的影響,選擇碳原子個數相同但雙鍵個數依次增加的油酸、亞油酸和亞麻酸作為浮選捕收劑對低階煤進行浮選,并與非極性捕收劑柴油進行對比,通過顆粒–氣泡間粘附力測試和藥劑吸附的分子動力學模擬,揭示了不飽和脂肪酸強化低階煤浮選的作用機制。結果表明,不飽和脂肪酸的浮選性能優于柴油,低階煤浮選產率隨脂肪酸不飽和度增加而增加。采用掃描電鏡(SEM)、傅里葉變換紅外光譜(FTIR)和X射線光電子能譜(XPS)對低階煤表面形貌和官能團進行分析。SEM結果表明,低階煤表面疏松,含有大量孔隙與裂隙,不利于藥劑在煤表面的鋪展。FTIR和XPS結果表明低階煤表面含有大量含氧官能團,表面疏水性較差,導致浮選回收率較低。對不同捕收劑條件下氣泡與煤表面粘附力進行測定,發現氣泡與煤表面間最大粘附力隨捕收劑不飽和程度增加而增加,這說明顆粒可浮性增加。進一步對不飽和脂肪酸吸附的分子動力學模擬進行分析,可知不飽和脂肪酸通過其極性基團與煤表面極性基團間形成氫鍵,從而在煤表面鋪展。雙鍵個數增加使得不飽和脂肪酸極性增加,在煤表面的鋪展程度逐漸增加,導致顆粒可浮性增加,這是低階煤浮選回收率隨脂肪酸不飽和程度增加而增加的主要原因。

     

  • 圖  1  粘附力測試系統原理圖[20]

    Figure  1.  Schematic diagram of adhesion force measurement system[20]

    圖  2  分子結構。(a)Wender模型[21];(b)水分子;(c)油酸分子;(d)亞油酸分子;(e)亞麻酸分子 (紅色:氧原子;白色:氫原子;灰色:碳原子)

    Figure  2.  Molecular structures of (a) Wender model[21]; (b) hydrone; (c) oleic acid molecule; (d) linoleic acid molecule; (e) linolenic acid molecule (The colors are shown as follows: red, oxygen atoms; white, hydrogen atoms; gray, carbon atoms)

    圖  3  SEM不同放大倍數下低階煤的表面形貌.(a)300;(b)500;(c)900

    Figure  3.  Surface morphology of low-rank coal with different magnifications of SEM: (a) 300; (b) 500; (c) 900

    圖  4  低階煤表面紅外光譜分析

    Figure  4.  FTIR spectrum of the low-rank coal

    圖  5  低階煤XPS寬譜掃描

    Figure  5.  XPS survey scan spectrum of the low-rank coal

    圖  6  低階煤窄掃C1s分峰

    Figure  6.  XPS C1s peak of the low-rank coal

    圖  7  不飽和脂肪酸對低階煤浮選產率和灰分的影響.(a)浮選精煤產率;(b)浮選精煤灰分

    Figure  7.  Effect of unsaturated fatty acids on flotation yield and ash content of low-rank coal: (a) yield of flotation concentration; (b) ash content of flotation concentration

    圖  8  捕收劑含量為500 g·t–1時氣泡與煤表面的力曲線. (a)柴油;(b)油酸;(c)亞油酸;(d)亞麻酸

    Figure  8.  Force curves between air bubble and coal surface when collector concentration is 500 g·t–1:(a) diesel oil; (b) oleic acid; (c) linoleic acid; (d) linolenic acid

    圖  9  捕收劑含量為1000 g·t–1時氣泡與煤表面的力曲線. (a)柴油;(b)油酸;(c)亞油酸;(d)亞麻酸

    Figure  9.  Force curves between air bubble and coal surface when collector concentration is 1000 g·t–1:(a) diesel oil; (b) oleic acid; (c) linoleic acid; (d) linolenic acid

    圖  11  捕收劑用量對氣泡與煤樣最大表面粘附力與脫落力的影響.(a)500 g·t–1;(b)1000 g·t–1;(c)2000 g·t–1

    Figure  11.  Effect of collector dosage on max adhesion forces and pull-off forces between air bubble and coal surface: (a) 500 g·t–1; (b) 1000 g·t–1; (c) 2000 g·t–1

    圖  12  不同捕收劑用量下氣泡與煤表面最大粘附力

    Figure  12.  Max adhesion forces between air bubbles and coal surfaces with different dosages of collectors

    圖  10  捕收劑含量為2000 g·t–1時氣泡與煤表面的力曲線.(a)柴油;(b)油酸;(c)亞油酸;(d)亞麻酸

    Figure  10.  Force curves between air bubble and coal surface when collector concentration is 2000 g·t–1:(a) diesel oil; (b) oleic acid; (c) linoleic acid; (d) linolenic acid

    圖  13  不飽和脂肪酸在煤/水界面的吸附結構.(a)油酸;(b)亞油酸;(c)亞麻酸(局部放大圖中藍色鍵為氫鍵)

    Figure  13.  Adsorption structure of unsaturated fatty acids at coal/water interface: (a) oleic acid; (b) linoleic acid; (c) linolenic acid (the blue bond in partial enlargement is hydrogen bond)

    圖  14  脂肪酸分子與水分子在煤/水界面的相對濃度分布.(a)油酸;(b)亞油酸;(c)亞麻酸

    Figure  14.  Relative concentration distributions of fatty acids and water molecules at the coal/water interface: (a) oleic acid; (b) linoleic acid; (c) linolenic acid

    表  1  煤樣工業分析(質量分數)

    Table  1.   Proximate analysis of the coal sample %

    MadAadVdafFCdaf
    11.169.1032.8161.08
    Note: ad—air dried basis;daf—dry ash free basis.
    下載: 導出CSV

    表  2  低階煤粒度組成分析

    Table  2.   Particle size and ash content distributions of low-rank coal

    Size / mmYield / %Ash / %Positive cumulative
    Yield / %Ash / %
    >0.5000.3311.880.3311.88
    0.500~0.25039.917.8640.247.89
    0.250~0.12525.157.6465.397.79
    0.125~0.0748.317.3173.697.74
    0.074~0.0459.238.1382.927.78
    <0.04517.0812.02100.008.51
    Total100.008.51
    下載: 導出CSV

    表  3  低階煤密度組成分析

    Table  3.   Density analysis of low-rank coal

    Density grades /
    (g·cm–3)
    Yield /
    %
    Ash /
    %
    Cumulative floate Cumulative sink
    Yield / %Ash / %Yield / %Ash / %
    <1.33.351.543.351.54 100.008.02
    1.3–1.456.953.5860.303.4796.658.24
    1.4–1.531.957.2092.264.7639.7014.93
    1.5–1.63.8324.4896.095.557.7546.79
    1.6–1.80.8455.7696.935.983.9268.58
    >1.83.0872.08100.008.023.0872.08
    Total100.008.02
    下載: 導出CSV

    表  4  低階煤表面元素組成及相對含量(質量分數)

    Table  4.   Surface element composition and relative contents of low-rank coal %

    CONMgCaSiAlNa
    72.1719.740.970.090.923.412.550.16
    下載: 導出CSV

    表  5  低階煤表面官能團組成及相對含量(質量分數)

    Table  5.   Relative contents of functional groups on surface of low-rank coal %

    C–C/C–HC–OC=OO=C–O
    63.5325.017.543.92
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xie H P, Wu L X, Zheng D Z. Prediction on the energy consumption and coal demand of China in 2025. J China Coal Soc, 2019, 44(7): 1949 doi: 10.13225/j.cnki.jccs.2019.0585

    謝和平, 吳立新, 鄭德志. 2025年中國能源消費及煤炭需求預測. 煤炭學報, 2019, 44(7):1949 doi: 10.13225/j.cnki.jccs.2019.0585
    [2] Weng F. Characteristics of China's energy structure and its development prospect. Econ Vis, 2012(1): 90

    翁非. 中國能源結構特征及發展前瞻. 經濟視角(下), 2012(1):90
    [3] Cai M F, Wu Y Q, Li P, et al. Present situation and ideas of green development of coal resources in Ningxia. Chin J Eng, 2022, 44(1): 1

    蔡美峰, 吳允權, 李鵬, 等. 寧夏地區煤炭資源綠色開發現狀與思路. 工程科學學報, 2022, 44(1):1
    [4] Gao S L, Liu J T. Primary search on making low rank coal to super pure coal by surface modification. Coal Technol, 2004, 23(9): 68 doi: 10.3969/j.issn.1008-8725.2004.09.049

    高淑玲, 劉炯天. 低階煤表面改性制備超凈煤初探. 煤炭技術, 2004, 23(9):68 doi: 10.3969/j.issn.1008-8725.2004.09.049
    [5] Qu J Z. Research on Reactive Oily Bubble Flotation Behavior of Low Rank Coal and its Flotation Technique [Dissertation]. Xuzhou: China University of Mining and Technology, 2015

    屈進州. 低階煤活性油泡浮選行為與浮選工藝研究[學位論文]. 徐州: 中國礦業大學, 2015
    [6] Chen S J. Surface/interface Characteristics of Shendong Long-flame Coal and its Attachment Mechanism with Reactive Oily Bubbles [Dissertation]. Xuzhou: China University of Mining and Technology, 2020

    陳松降. 神東長焰煤的表/界面特征及與活性油泡粘附的作用機制[學位論文]. 徐州: 中國礦業大學, 2020
    [7] Gui X H. Two-stage Separation and Process Intensification of Fine Coal [Dissertation]. Xuzhou: China University of Mining and Technology, 2012

    桂夏輝. 煤泥分選過程強化及兩段式分選研究[學位論文]. 徐州: 中國礦業大學, 2012
    [8] Liu J T. Reflection on low-carbon development of coal energy in China. J China Univ Min &Technol (Soc Sci), 2011, 13(1): 5

    劉炯天. 關于我國煤炭能源低碳發展的思考. 中國礦業大學學報(社會科學版), 2011, 13(1):5
    [9] Xing Y W, Gui X H, Cao Y J, et al. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technol, 2017, 305: 166 doi: 10.1016/j.powtec.2016.10.003
    [10] Sen R, Srivastava S K, Singh M M. Aerial oxidation of coal-analytical methods, instrumental techniques and test methods: A survey. Indian J Chem Technol, 2009, 16(2): 103
    [11] Chen S J, Yang Z, Chen L, et al. Wetting thermodynamics of low rank coal and attachment in flotation. Fuel, 2017, 207: 214
    [12] Jia R H, Harris G H, Fuerstenau D W. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int J Miner Process, 2000, 58(1-4): 99 doi: 10.1016/S0301-7516(99)00024-1
    [13] Wen B F, Xia W C, Sokolovic J M. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technol, 2017, 319: 1 doi: 10.1016/j.powtec.2017.06.030
    [14] Jin W. Study on Vegetable Oil Collector Enhanced Low-rank Coal Flotation [Dissertation]. Xuzhou: China University of Mining and Technology, 2019

    晉偉. 植物油捕收劑強化低階煤浮選試驗研究[學位論文]. 徐州: 中國礦業大學, 2019
    [15] Dey S. Enhancement in hydrophobicity of low rank coal by surfactants–a critical overview. Fuel Process Technol, 2012, 94(1): 151 doi: 10.1016/j.fuproc.2011.10.021
    [16] Gui X H, Xing Y W, Wang T X, et al. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid. Powder Technol, 2017, 305: 109 doi: 10.1016/j.powtec.2016.09.058
    [17] Miao Z Y, Xing Y W, Gui X H, et al. Anthracite coal flotation using dodecane and nonyl benzene. Int J Coal Prep Util, 2017, 38(8): 393
    [18] Liang J D. Auto-oxidation of unsaturated fatty acid as well as its reaction products and action mechanism. Min Metall Eng, 1986, 6(3): 28

    梁經冬. 不飽和脂肪酸的自氧化現象及其反應產物的浮選性能與作用機理. 礦冶工程, 1986, 6(3):28
    [19] Jin L Z, Zhao J D, Wang H, et al. Characteristic modification of coal-based activated carbon and its methane adsorption capacity. Chin J Eng, 2022, 44(4): 526

    金龍哲, 趙金丹, 王輝, 等. 煤基活性炭改性及其甲烷吸附能力. 工程科學學報, 2022, 44(4):526
    [20] Zhu C Y, Li G S, Xing Y W, et al. Adhesion forces for water/oil droplet and bubble on coking coal surfaces with different roughness. Int J Min Sci Technol, 2021, 31(4): 681 doi: 10.1016/j.ijmst.2021.03.002
    [21] Wender I. Catalytic synthesis of chemicals from coal. Catal Rev, 1976, 14(1): 97 doi: 10.1080/03602457608073408
    [22] Xu M D, Xing Y W, Cao Y J, et al. Waste colza oil used as renewable collector for low rank coal flotation. Powder Technol, 2019, 344: 611 doi: 10.1016/j.powtec.2018.12.058
    [23] Xing Y W, Gui X H, Cao Y J, et al. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification. J Clean Prod, 2017, 153: 657 doi: 10.1016/j.jclepro.2016.11.057
    [24] Xu M D, Guo F Y, Zhang Y F, et al. Effect of hydrothermal pretreatment on surface physicochemical properties of lignite and its flotation response. Powder Technol, 2021, 386: 81 doi: 10.1016/j.powtec.2021.03.024
    [25] Yang Z L, Guo F Y, Xia Y C, et al. Improved floatability of low-rank coal through surface modification by hydrothermal pretreatment. J Clean Prod, 2020, 246: 119025 doi: 10.1016/j.jclepro.2019.119025
    [26] Yang H C, Xing Y W, Sun L J, et al. Kinetics of bubble-particle attachment and detachment at a single-bubble scale. Powder Technol, 2020, 370: 251 doi: 10.1016/j.powtec.2020.05.064
    [27] Sherman H, Nguyen A V, Bruckard W. An analysis of bubble deformation by a sphere relevant to the measurements of bubble-particle contact interaction and detachment forces. Langmuir, 2016, 32(46): 12022 doi: 10.1021/acs.langmuir.6b02985
    [28] Zhang L, Guo J Y, Xie Z X, et al. Micro-mechanism of improving low-rank coal flotation by using carboxylic acid collector: A DFT calculation and MD simulation study. Colloids Surf A Physicochem Eng Aspects, 2021, 622: 126696 doi: 10.1016/j.colsurfa.2021.126696
    [29] Xia Y C, Zhang R, Xing Y W, et al. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel, 2019, 235: 687 doi: 10.1016/j.fuel.2018.07.059
    [30] He M, Zhang W, Cao X Q, et al. Adsorption behavior of surfactant on lignite surface: A comparative experimental and molecular dynamics simulation study. Int J Mol Sci, 2018, 19(2): 437 doi: 10.3390/ijms19020437
  • 加載中
圖(14) / 表(5)
計量
  • 文章訪問數:  547
  • HTML全文瀏覽量:  225
  • PDF下載量:  62
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-26
  • 網絡出版日期:  2021-12-18
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回