<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋼?渣界面非金屬夾雜物運動行為研究進展

劉威 楊樹峰 李京社

劉威, 楊樹峰, 李京社. 鋼?渣界面非金屬夾雜物運動行為研究進展[J]. 工程科學學報, 2021, 43(12): 1647-1655. doi: 10.13374/j.issn2095-9389.2021.09.29.007
引用本文: 劉威, 楊樹峰, 李京社. 鋼?渣界面非金屬夾雜物運動行為研究進展[J]. 工程科學學報, 2021, 43(12): 1647-1655. doi: 10.13374/j.issn2095-9389.2021.09.29.007
LIU Wei, YANG Shu-feng, LI Jing-she. Review of research on inclusion motion behaviors at the steel?slag interface[J]. Chinese Journal of Engineering, 2021, 43(12): 1647-1655. doi: 10.13374/j.issn2095-9389.2021.09.29.007
Citation: LIU Wei, YANG Shu-feng, LI Jing-she. Review of research on inclusion motion behaviors at the steel?slag interface[J]. Chinese Journal of Engineering, 2021, 43(12): 1647-1655. doi: 10.13374/j.issn2095-9389.2021.09.29.007

鋼?渣界面非金屬夾雜物運動行為研究進展

doi: 10.13374/j.issn2095-9389.2021.09.29.007
基金項目: 國家自然科學基金資助項目(51734003,51822401);中央高校基本科研業務費資助項目(FRF-TP-18-009C1,FRF-TP-20-008A1);中國博士后科學基金資助項目(2020M680010)
詳細信息
    通訊作者:

    E-mail: yangshufeng@ustb.edu.cn

  • 中圖分類號: TF762+.8

Review of research on inclusion motion behaviors at the steel?slag interface

More Information
  • 摘要: 鋼中夾雜物的去除一直是潔凈鋼研究的熱點,對于提高鋼材質量、保障產品性能具有重要意義。鋼液中夾雜物主要通過上浮至頂渣被吸收而去除,這個過程可細分為夾雜物在鋼液中長大上浮、在鋼?渣界面穿越分離、在熔渣中被吸附溶解3個步驟。鋼?渣兩相的物性差異及界面特性導致不符合條件的夾雜物無法穿過界面與鋼液分離,這使得該步驟成為夾雜物去除的決定性環節,且由于鋼?渣兩相周圍快速的物性過渡、并行的物理化學現象以及高溫、不透明等特性影響,使該步驟研究難度增大。近年來,隨著數值模擬技術和高溫實驗設備的進步,夾雜物穿越鋼?渣界面行為的研究取得了一些進展。經典的受力分析模型能夠對夾雜物界面行為進行半定量的預測,且對于渣系優化等具有一定的指導作用;計算流體動力學(CFD)模型在研究夾雜物界面現象方面具有優勢,但研究尚處于初期,未來有望適用于更大的尺度范圍、更多的行為場景和相態;水模型與數值模型相結合是一種有效的研究界面行為的方法,隨著實驗技術進步,可進一步對微觀尺度的界面行為進行研究;高溫共聚焦原位觀察是研究界面行為最為直接的方法,對于探究夾雜物界面行為極有幫助,有望通過設備改進,更加完整、深入地揭示夾雜物去除的關鍵機理。

     

  • 圖  1  夾雜物界面去除動態受力分析模型示意圖[5]

    Figure  1.  Schematic of the dynamic force analysis model of inclusion separation at the interface[5]

    圖  2  考慮界面變形及鋼液膜破裂的夾雜物受力分析模型示意圖[3]

    Figure  2.  Schematic of the force analysis model considering interface deformation and steel film rupture[3]

    圖  3  板坯結晶器內夾雜物運動DPM方法模擬結果[20]

    Figure  3.  Simulation of the inclusion motion in a slab mold using the DPM method[20]

    圖  4  相場多相流模擬與水模實驗結果對比[27]

    Figure  4.  Comparison of the phase field model simulation and water model experiment[27]

    圖  5  水模型中空心氧化鋁小球與水?油界面相互作用過程[34]

    Figure  5.  Interaction between the water–oil interface and hollow alumina sphere of the water model[34]

    圖  6  高溫共聚焦顯微鏡原位觀察鋼?渣界面處的夾雜物[42]

    Figure  6.  In-situ observation of the inclusion at the steel?slag interface with HT?CSLM[42]

    圖  7  高溫共聚焦顯微鏡觀察到鋼?渣界面處的夾雜物聚合[44-45]

    Figure  7.  In-situ observation of inclusion aggregation at the steel-slag interface with HT?CSLM[44-45]

    圖  8  物性參數改變對20 μm的液態50%Al2O3–50%CaO (質量百分數)夾雜物去除位移的影響[9]

    Figure  8.  Effects of physical properties on a 20 μm liquid 50%Al2O3–50%CaO (mass fraction) inclusion’s displacement during removal[9]

    σMS—steel?slag interface tension;σIS—inclusion?slag interface tension;σMI—steel?inclusion interface tension;dI—inclusion diameter;ρI—inclusion density;ρM—molten steel density;ρS—slag density;μM—molten steel viscosity;μI—inclusion viscosity;μS—slag viscosity

    圖  9  100 μm和20 μm的夾雜物界面行為的物性優勢區圖[9, 48]

    Figure  9.  Predominance diagram of physical properties of 20 and 100 μm inclusions’ interfacial behaviors [9, 48]

    表  1  夾雜物受力分析模型及其特征

    Table  1.   Inclusions’ dynamic force analysis model and their features

    Year and ReferenceModel featuresInclusion typeSlag typeTemperature/
    K
    1992, Nakajima et al.[1]Basic model with consideration of steel film drainageRigid sphere Al2O3, Al2O3?SiO2?TiO2 and Al2O3?SiO2?FeO?TiO2SiO2?Al2O3?CaF2?MgO?CaO?
    Na2O and so on three types
    1823
    1998, Bouris and Bergeles [6]Considering the steel film drainage and re-entrainment of inclusionRigid sphere Al2O3, Al2O3?SiO2?TiO2 and Al2O3?SiO2?FeO?TiO2SiO2?Al2O3?CaF2?MgO?CaO?
    Na2O and so on three types
    2005, Shannon and Sridhar [7]Study the separation of different inclusion shapesSphere, octahedron and plate shapeLF refining slag, tundish flux and mold flux
    2006, Valdez et al. [8]Considering the separation and dissolution of inclusion separatelyRigid sphere Al2O3, MgO, ZrO2 and Mg Al2O4LF refining slag, tundish flux and mold flux1773
    2005, Strandh et al. [9]First study focusing on the liquid inclusion separationRigid liquid sphereLF refining slag1773, 1873
    2005, Strandh et al. [10]Application of the model to optimizing tundish flux contentRigid sphere Al2O3Tundish flux1823
    2008, Shannon et al. [11]Study on the contact velocity of inclusion with the interfaceRigid sphere Al2O3Tundish flux
    2014, Yang et al. [12]Revise the drag force and terminal velocity equations according to Re numberRigid sphere Al2O3LF refining slag1873
    2019, Liu et al. [4]Coupling the separation and dynamic dissolution model of inclusionRigid sphere Al2O3LF refining slag1873
    2019, Xuan et al.[3]Considering the interfacial deformation at the stage of thin-film drainageRigid liquid sphereVD refining slag1873
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Nakajima K, Okamura K. Inclusion transfer behavior across molten steel–slag interface // The 4th International Conference on Molten Slags and Fluxes. Sendai, 1992: 505
    [2] Liu C, Yang S F, Li J S, et al. Motion behavior of nonmetallic inclusions at the interface of steel and slag. part I: Model development, validation, and preliminary analysis. Metall Mater Trans B, 2016, 47(3): 1882
    [3] Xuan C J, Persson E S, Sevastopolev R, et al. Motion and detachment behaviors of liquid inclusion at molten steel?slag interfaces. Metall Mater Trans B, 2019, 50(4): 1957 doi: 10.1007/s11663-019-01568-2
    [4] Liu W, Yang S F, Li J S, et al. Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag. J Iron Steel Res Int, 2019, 26(11): 1147 doi: 10.1007/s42243-018-0212-2
    [5] Yang S F, Liu W, Li J S. Motion of solid particles at molten metal?liquid slag interface. JOM, 2015, 67(12): 2993 doi: 10.1007/s11837-015-1642-y
    [6] Bouris D, Bergeles G. Investigation of inclusion re-entrainment from the steel?slag interface. Metall Mater Trans B, 1998, 29(3): 641 doi: 10.1007/s11663-998-0099-6
    [7] Shannon G N, Sridhar S. Modeling Al2O3 inclusion separation across steel?slag interfaces. Scand J Metall, 2005, 34(6): 353 doi: 10.1111/j.1600-0692.2005.00755.x
    [8] Valdez M, Shannon G S, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int, 2006, 46(3): 450 doi: 10.2355/isijinternational.46.450
    [9] Strandh J, Nakajima K, Eriksson R, et al. A mathematical model to study liquid inclusion behavior at the steel?slag interface. ISIJ Int, 2005, 45(12): 1838 doi: 10.2355/isijinternational.45.1838
    [10] Strandh J, Nakajima K, Eriksson R, et al. Solid inclusion transfer at a steel?slag interface with focus on tundish conditions. ISIJ Int, 2005, 45(11): 1597 doi: 10.2355/isijinternational.45.1597
    [11] Shannon G, White L, Sridhar S. Modeling inclusion approach to the steel/slag interface. Mater Sci Eng A, 2008, 495(1-2): 310 doi: 10.1016/j.msea.2007.09.087
    [12] Yang S F, Li J S, Liu C, et al. Motion behavior of nonmetal inclusions at the interface of steel and slag. part II:Model application and discussion. Metall Mater Trans B, 2014, 45(6): 2453
    [13] Liu W, Yang S F, Li J S. Calculation of static suspension depth and meniscus shape of a solid spherical inclusion at the steel?slag interface. Metall Mater Trans B, 2020, 51(2): 422 doi: 10.1007/s11663-020-01770-7
    [14] S?der M, J?nsson P, Jonsson L. Inclusion growth and removal in gas-stirred ladles. Steel Res Int, 2004, 75(2): 128 doi: 10.1002/srin.200405938
    [15] Zhu M Y, Zheng S G, Huang Z Z, et al. Numerical simulation of nonmetallic inclusions behaviour in gas-stirred ladles. Steel Res Int, 2005, 76(10): 718 doi: 10.1002/srin.200506085
    [16] Miki Y, Thomas B G, Denissov A, et al. Model of inclusion removal during RH degassing of steel. Iron Steelmaker, 1997, 24(8): 31
    [17] Miki Y, Thomas B G. Modeling of inclusion removal in a tundish. Metall Mater Trans B, 1999, 30(4): 639 doi: 10.1007/s11663-999-0025-6
    [18] Wang L T, Zhang Q Y, Deng C H, et al. Mathematical model for removal of inclusion in molten steel by injecting gas at ladle shroud. ISIJ Int, 2005, 45(8): 1138 doi: 10.2355/isijinternational.45.1138
    [19] Thomas B G, Zhang L F. Mathematical modeling of iron and steel making processes. mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 41(10): 1181
    [20] Cho S M, Thomas B G, Hwang J Y, et al. Modeling of inclusion capture in a steel slab caster with vertical section and bending. Metals, 2021, 11(4): 654 doi: 10.3390/met11040654
    [21] Geng D Q, Zheng J X, Wang K, et al. Simulation on decarburization and inclusion removal process in the ruhrstahl-heraeus (RH) process with ladle bottom blowing. Metall Mater Trans B, 2015, 46(3): 1484 doi: 10.1007/s11663-015-0314-1
    [22] Chattopadhyay K, Isac M, Guthrie R I L. Considerations in using the discrete phase model (DPM). Steel Res Int, 2011, 82(11): 1287 doi: 10.1002/srin.201000214
    [23] Duan H J, Ren Y, Zhang L F. Inclusion capture probability prediction model for bubble floatation in turbulent steel flow. Metall Mater Trans B, 2019, 50(1): 16 doi: 10.1007/s11663-018-1462-x
    [24] Chen K L, Wang D Y, Qu T P, et al. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel. Chin J Eng, 2019, 41(10): 1280

    陳開來, 王德永, 屈天鵬, 等. 鋼中液態夾雜物聚并行為的數學物理模擬. 工程科學學報, 2019, 41(10):1280
    [25] Xu Y G, Ersson M, J?nsson P. Numerical simulation of single argon bubble rising in molten metal under a laminar flow. Steel Res Int, 2015, 86(11): 1289 doi: 10.1002/srin.201400355
    [26] Xuan C J, Persson E S, Jensen J, et al. A novel evolution mechanism of Mg?Al?oxides in liquid steel: Integration of chemical reaction and coalescence-collision. J Alloys Compd, 2020, 812: 152149 doi: 10.1016/j.jallcom.2019.152149
    [27] Liu W, Yang S F, Li J S, et al. Numerical simulation of the three-phase flow of a bubble interacting with the steel?slag interface during the secondary refining process. Metall Mater Trans B, 2019, 50(4): 1542 doi: 10.1007/s11663-019-01580-6
    [28] Liu W, Liu J, Zhao H X, et al. CFD modeling of solid inclusion motion and separation from liquid steel to molten slag. Metall Mater Trans B, 2021, 52(4): 2430 doi: 10.1007/s11663-021-02203-9
    [29] Huang A, Wang H Z, Gu H Z, et al. A study on water modeling of inclusion removal in tundish with gas curtain. Special Steel, 2009, 30(1): 7

    黃奧, 汪厚植, 顧華志, 等. 氣幕擋墻中間包夾雜物去除的水模型研究. 特殊鋼, 2009, 30(1):7
    [30] Ni B, Luo Z G, Di Z X, et al. Experimental study on inclusion removal in slab continuous casting mold by water modeling. Continuous Cast, 2009, 34(1): 1

    倪冰, 羅志國, 狄瞻霞, 等. 板坯連鑄結晶器內夾雜物去除的水模實驗研究. 連鑄, 2009, 34(1):1
    [31] Chen X Y, Cao L, Hu J D, et al. Study on water modeling for mixing trait and inclusion removing of LF. Iron Steel, 2009, 44(12): 27 doi: 10.3321/j.issn:0449-749X.2009.12.006

    陳向陽, 曹磊, 胡建東, 等. LF精煉爐混合特性及夾雜物去除的水模型研究. 鋼鐵, 2009, 44(12):27 doi: 10.3321/j.issn:0449-749X.2009.12.006
    [32] Cho J S, Lee H G. Cold model study on inclusion removal from liquid steel using fine gas bubbles. ISIJ Int, 2001, 41(2): 151 doi: 10.2355/isijinternational.41.151
    [33] Nakaoka T, Taniguchi S, Matsumoto K, et al. Particle-size-grouping method of lnclusion agglomeration and its application to water model experiments. ISIJ Int, 2001, 41(10): 1103 doi: 10.2355/isijinternational.41.1103
    [34] Zhou Y L, Deng Z Y, Zhu M Y. Separation mechanism of solid/liquid inclusions transfer at steel-slag interface. Chin J Process Eng, 2018, 18(1): 96 doi: 10.12034/j.issn.1009-606X.217237

    周業連, 鄧志銀, 朱苗勇. 固/液態夾雜物穿過鋼渣界面的分離機理. 過程工程學報, 2018, 18(1):96 doi: 10.12034/j.issn.1009-606X.217237
    [35] Yang H B. Study on Moving Behavior of Inclusion during Process of Passing Steel−Slag Interface [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    楊宏博. 夾雜物穿越鋼渣界面過程運動行為研究[學位論文]. 北京: 北京科技大學, 2015
    [36] Liu C, Li J S, Sun L Y, et al. Influence of floatation velocity on removal of inclusions at steel?slag interface. Special Steel, 2014, 35(5): 5 doi: 10.3969/j.issn.1003-8620.2014.05.002

    劉超, 李京社, 孫麗媛, 等. 上浮速度對鋼渣界面夾雜物去除的影響. 特殊鋼, 2014, 35(5):5 doi: 10.3969/j.issn.1003-8620.2014.05.002
    [37] Liu C. Theoretical Study on the Separation and Removal of Inclusions at the Steel Slag Interface [Dissertation]. Beijing: University of Science and Technology Beijing, 2014

    劉超. 鋼渣界面夾雜物分離去除的理論研究 [學位論文]. 北京: 北京科技大學, 2014
    [38] Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B, 2001, 32(1): 79 doi: 10.1007/s11663-001-0010-1
    [39] Vantilt S, Coletti B, Blanpain B, et al. Observation of inclusions in manganese-silicon killed steels at steel?gas and steel-slag interfaces. ISIJ Int, 2004, 44(1): 1 doi: 10.2355/isijinternational.44.1
    [40] Liu J, Guo M, Jones P T, et al. In situ observation of the direct and indirect dissolution of MgO particles in CaO?Al2O3?SiO2-based slags. J Eur Ceram Soc, 2007, 27(4): 1961 doi: 10.1016/j.jeurceramsoc.2006.05.107
    [41] Kimura S, Nabeshima Y, Nakajima K, et al. Behavior of nonmetallic inclusions in front of the solid?liquid interface in low-carbon steels. Metall Mater Trans B, 2000, 31(5): 1013 doi: 10.1007/s11663-000-0077-0
    [42] Misra P, Chevrier V, Sridhar S, et al. In situ observations of inclusions at the (Mn, Si)-killed steel/CaO?Al2O3 interface. Metall Mater Trans B, 2000, 31(5): 1135 doi: 10.1007/s11663-000-0090-3
    [43] Coletti B, Blanpain B, Vantilt S, et al. Observation of calcium aluminate inclusions at interfaces between Ca-treated, Al-killed steels and slags. Metall Mater Trans B, 2003, 34(5): 533 doi: 10.1007/s11663-003-0021-1
    [44] Wikstr?m J, Nakajima K, Shibata H, et al. In situ studies of the agglomeration phenomena for calcium-alumina inclusions at liquid steel?liquid slag interface and in the slag. Mater Sci Eng:A, 2008, 495(1-2): 316 doi: 10.1016/j.msea.2007.09.084
    [45] Wikstr?m J, Nakajima K, Shibata H, et al. In situ studies of agglomeration between Al2O3?CaO inclusions at metal/gas, metal/slag interfaces and in slag. Ironmak Steelmaker, 2008, 35(8): 589 doi: 10.1179/174328108X284589
    [46] Liu J H, Verhaeghe F, Guo M X, et al. In situ observation of the dissolution of spherical alumina particles in CaO?Al2O3?SiO2 melts. J Am Ceram Soc, 2007, 90(12): 3818
    [47] Yin H B, Shibata H, Emi T, et al. “in-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts. ISIJ Int, 1997, 37(10): 936 doi: 10.2355/isijinternational.37.936
    [48] Wikstr?m J, Nakajima K, Jonsson L, et al. Application of a model for liquid inclusion separation at a steel?slag interface for laboratory and industrial situations. Steel Res Int, 2008, 79(11): 826 doi: 10.1002/srin.200806206
    [49] Rocha V C, Pereira J A M, Yoshioka A, et al. Evaluation of secondary steelmaking slags and their relation with steel cleanliness. Metall Mater Trans B, 2017, 48(3): 1423 doi: 10.1007/s11663-017-0935-7
    [50] Wang H M, Li G R, Dai Q X, et al. Effect of additives on viscosity of LATS refining ladle slag. ISIJ Int, 2006, 46(5): 637 doi: 10.2355/isijinternational.46.637
    [51] Hanao M, Tanaka T, Kawamoto M, et al. Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int, 2007, 47(7): 935 doi: 10.2355/isijinternational.47.935
    [52] Duchesne M A, Hughes R W. Slag density and surface tension measurements by the constrained sessile drop method. Fuel, 2017, 188: 173 doi: 10.1016/j.fuel.2016.10.023
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1901
  • HTML全文瀏覽量:  461
  • PDF下載量:  122
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-29
  • 網絡出版日期:  2021-10-19
  • 刊出日期:  2021-12-24

目錄

    /

    返回文章
    返回