<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

g-C3N4材料在光催化能源轉換領域的新進展

趙夢迪 李永利 王金淑

趙夢迪, 李永利, 王金淑. g-C3N4材料在光催化能源轉換領域的新進展[J]. 工程科學學報, 2022, 44(4): 641-653. doi: 10.13374/j.issn2095-9389.2021.09.01.001
引用本文: 趙夢迪, 李永利, 王金淑. g-C3N4材料在光催化能源轉換領域的新進展[J]. 工程科學學報, 2022, 44(4): 641-653. doi: 10.13374/j.issn2095-9389.2021.09.01.001
ZHAO Meng-di, LI Yong-li, WANG Jin-shu. Recent progress of graphitic phase carbon nitride photocatalytic materials on solar energy conversion[J]. Chinese Journal of Engineering, 2022, 44(4): 641-653. doi: 10.13374/j.issn2095-9389.2021.09.01.001
Citation: ZHAO Meng-di, LI Yong-li, WANG Jin-shu. Recent progress of graphitic phase carbon nitride photocatalytic materials on solar energy conversion[J]. Chinese Journal of Engineering, 2022, 44(4): 641-653. doi: 10.13374/j.issn2095-9389.2021.09.01.001

g-C3N4材料在光催化能源轉換領域的新進展

doi: 10.13374/j.issn2095-9389.2021.09.01.001
基金項目: 國家自然科學基金資助項目(51974011);國家創新群體資助項目(51621003);北京長城學者研究計劃資助項目(20190307)
詳細信息
    通訊作者:

    李永利,E-mail: lyl@bjut.edu.cn

    王金淑,E-mail: wangjsh@bjut.edu.cn

  • 中圖分類號: TG142.71

Recent progress of graphitic phase carbon nitride photocatalytic materials on solar energy conversion

More Information
  • 摘要: 類石墨相氮化碳(g-C3N4)作為當前光催化領域的熱點材料,盡管在可見光響應范圍和載流子的遷移/分離方面不如人意,但其不含金屬、穩定性好,結構易于調控等優點依然備受關注,尤其是近年來基于g-C3N4的形貌與電子結構調控取得了大量的突破性進展。本文系統地綜述了針對g-C3N4缺陷的不同改性和優化方法,從形貌調控、結構優化、構建異質結三方面介紹了g-C3N4光催化材料的最新研究進展,重點闡述了針對改善光催化分解水效率的各種改性優化策略。以材料的維度尺寸作為切入點介紹了不同形貌g-C3N4的制備方法,從摻雜與缺陷調控角度總結了g-C3N4結構與光生載流子分離以及催化性能的關系,并且依據不同異質結類型歸納了g-C3N4基光催化材料體系。最后,對g-C3N4基光催化材料今后的發展與面臨的挑戰進行了展望和總結。

     

  • 圖  1  0D/2D g-CNQDs/PMOF光催化還原二氧化碳生成CH4過程示意圖[35]

    Figure  1.  Schematic of the 0D/2D g-CNQDs/PMOF photocatalytic reduction of carbon dioxide to CH4[35]

    圖  2  g-C3N4納米管的形成過程[41]

    Figure  2.  Formation process of graphitic phase carbon nitride nanotubes[41]

    圖  3  (a)二維氮化碳(550 ℃, 2 h)的掃描電鏡形貌;(b~g)在不同保溫時間下(0, 0.5, 1, 1.5, 2, 2.5 h)550 ℃熱處理制得g-C3N4的掃描電鏡形貌;(h~i)550 ℃保溫1.5 h后制得g-C3N4的掃描電鏡和透射電鏡形貌[53]

    Figure  3.  (a) Scanning electron microscopy (SEM) images of two-dimensional carbon nitride (550 ℃, 2 h); (b?g) SEM images of the g-C3N4 from layered organic materials in different heat preservation time at 550 ℃ with holding times of 0 h, 0.5 h, 1 h, 1.5 h, 2 h, and 2.5 h; (h–i) SEM and transmission electron microscopy images of graphitic phase carbon nitride prepared by CN at 550 ℃ for 1.5 h[53]

    圖  4  (a)爐內空氣冷卻的g-C3N4 (ACN)和三維分級多孔g-C3N4(HCN)的實驗過程示意圖;(b,c)HCN的場發射掃描電鏡圖像;(d)HCN的透射電鏡圖像[56]

    Figure  4.  (a) Schematic of the experimental process of ACN and HCN; (b,c) FESEM image of HCN; (d) transmission electron microscopy image of HCN[56]

    圖  5  (a)分層C3N4納米結構的氣固生長示意圖;(b)薄膜上C3N4納米結構的光學顯微像(OM);(c,d)薄膜上C3N4納米結構的掃描電鏡照片[60]

    Figure  5.  (a) Gas–solid growth diagram of layered C3N4 nanostructures; (b) optical microscope images of C3N4 nanostructures on thin films; (c and d) scanning electron microscopy images of C3N4 nanostructures on thin films[60]

    圖  6  P-g-C3N4的形成過程[67]

    Figure  6.  Formation process of P-g-C3N4[67]

    圖  7  p區元素摻雜的g-C3N4電子結構.(a)摻雜能級為1.69 eV的N摻雜g-C3N4能帶結構(左)和相應的態密度(右);(b)不同摻雜劑摻雜的g-C3N4直接帶隙;(c)各種元素摻雜g-C3N4的導帶(CB,黑色)和價帶(VB,紅色)邊緣位置[72]

    Figure  7.  Electronic structure of the p-block element doped graphitic phase carbon nitride (g-C3N4): (a) band structure of N-doped g-C3N4 with a doping energy level of 1.69 eV (left) and the corresponding partial state density (right); (b) direct band gap of g-C3N4 doped with different dopants; (c) conduction band (black) and valence band (VB, red) edge positions of doped g-C3N4[72]

    圖  8  基于EDA氣?固反應的g-C3N4不對稱結構調控設計及合成路線[74]

    Figure  8.  Conceptual design and synthetic route for the asymmetric structure engineering of melon-based graphitic phase carbon nitride through the EDA-induced gas–solid reaction[74]

    圖  9  在不同氣氛下對g-C3N4進行連續熱處理制備富碳g-C3N4納米片的過程示意圖[79]

    Figure  9.  Preparation of carbon-rich graphitic phase carbon nitride (g-C3N4) nanosheets by continuous heat treatment of g-C3N4 in different atmospheres[79]

    圖  10  不同類型的g-C3N4基異質結系統的電荷轉移機制[81]

    Figure  10.  Charge-transfer mechanisms in different types of g-C3N4-based heterojunction systems[81]

    圖  11  催化劑的合成及微觀形貌。(a)由CNN衍生的BDCNN合成原理圖;(b,c)CNN和BDCNN的透射電鏡照片;(d,e)CNN和BDCNN在硅片上的原子力顯微鏡圖像及高度輪廓線[95]

    Figure  11.  Catalyst synthesis and microscopy: (a) schematic of the synthesis of BDCNN derived from CNN; transmission electron microscopy images of CNN (b) and BDCNN (c); AFM images of CNN (d) and BDCNN (e) on a silicon wafer with the height profile determined along the lines shown in the insets[95]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem Rev, 2016, 116(12): 7159
    [2] Kreps B H. The rising costs of fossil-fuel extraction: An energy crisis that will not go away. Am J Econ Sociol, 2020, 79(3): 695 doi: 10.1111/ajes.12336
    [3] Xiao J D, Jiang H L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res, 2019, 52(2): 356 doi: 10.1021/acs.accounts.8b00521
    [4] Kabir E, Kumar P, Kumar S, et al. Solar energy: Potential and future prospects. Renew Sustain Energy Rev, 2018, 82: 894 doi: 10.1016/j.rser.2017.09.094
    [5] Jeon T H, Koo M S, Kim H, et al. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal, 2018, 8(12): 11542 doi: 10.1021/acscatal.8b03521
    [6] Peng J H, Chen X Z, Ong W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem, 2019, 5(1): 18 doi: 10.1016/j.chempr.2018.08.037
    [7] Zhu L L, Gao M M, Peh C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater Horiz, 2018, 5(3): 323 doi: 10.1039/C7MH01064H
    [8] Zhang L P, Lin C Y, Zhang D T, et al. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv Mater, 2019, 31(13): 1805252 doi: 10.1002/adma.201805252
    [9] Wang W, Tadé M O, Shao Z P. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog Mater Sci, 2018, 92: 33 doi: 10.1016/j.pmatsci.2017.09.002
    [10] Twilton J, Le C, Zhang P, et al. The merger of transition metal and photocatalysis. Nat Rev Chem, 2017, 1: 52 doi: 10.1038/s41570-017-0052
    [11] Chen Y, Wang X C. Template-free synthesis of hollow G-C3N4 polymer with vesicle structure for enhanced photocatalytic water splitting. J Phys Chem C, 2018, 122(7): 3786 doi: 10.1021/acs.jpcc.7b12496
    [12] Chen S S, Qi Y, Li C, et al. Surface strategies for particulate photocatalysts toward artificial photosynthesis. Joule, 2018, 2(11): 2260 doi: 10.1016/j.joule.2018.07.030
    [13] Chen S S, Takata T, Domen K. Particulate photocatalysts for overall water splitting. Nat Rev Mater, 2017, 2: 17050 doi: 10.1038/natrevmats.2017.50
    [14] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
    [15] Tekin D, Kiziltas H, de Ungan H. Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. J Mol Liq, 2020, 306: 112905 doi: 10.1016/j.molliq.2020.112905
    [16] He R, Xu D F, Cheng B, et al. Review on nanoscale Bi-based photocatalysts. Nanoscale Horizons, 2018, 3(5): 464 doi: 10.1039/C8NH00062J
    [17] Xu J L, Sun C F, Wang Z Y, et al. Perovskite oxide LaNiO3 nanoparticles for boosting H2 evolution over commercial CdS with visible light. Chem A Eur J, 2018, 24(69): 18512 doi: 10.1002/chem.201802920
    [18] Ma S, Deng Y P, Xie J, et al. Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl Catal B:Environ, 2018, 227: 218 doi: 10.1016/j.apcatb.2018.01.031
    [19] Zhang K, Lin Y X, Muhammad Z, et al. Active {010} facet-exposed Cu2MoS4 nanotube as high-efficiency photocatalyst. Nano Res, 2017, 10(11): 3817 doi: 10.1007/s12274-017-1594-3
    [20] Wu X Q, Zhao J, Wang L P, et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B:Environ, 2017, 206: 501 doi: 10.1016/j.apcatb.2017.01.049
    [21] Ren Y J, Zeng D Q, Ong W J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin J Catal, 2019, 40(3): 289 doi: 10.1016/S1872-2067(19)63293-6
    [22] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8(1): 76 doi: 10.1038/nmat2317
    [23] Ren W, Cheng J J, Ou H H, et al. Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. J Catal, 2020, 389: 636 doi: 10.1016/j.jcat.2020.07.005
    [24] Gong Z Q, Yan C X, Xuan Z Y, et al. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride. Chin J Eng, 2021, 43(3): 345

    鞏正奇, 閆楚璇, 宣之易, 等. 制備類石墨相氮化碳多孔光催化劑的模板法發展. 工程科學學報, 2021, 43(3):345
    [25] Zhou M, Chen Z, Yang P J, et al. Hydrogen reduction treatment of boron carbon nitrides for photocatalytic selective oxidation of alcohols. Appl Catal B:Environ, 2020, 276: 118916 doi: 10.1016/j.apcatb.2020.118916
    [26] Fang Y X, Fu X Z, Wang X C. Diverse polymeric carbon nitride-based semiconductors for photocatalysis and variations. ACS Mater Lett, 2020, 2(8): 975 doi: 10.1021/acsmaterialslett.0c00215
    [27] Wang X L, Yang H G. Facile fabrication of high-yield graphitic carbon nitride with a large surface area using bifunctional urea for enhanced photocatalytic performance. Appl Catal B:Environ, 2017, 205: 624 doi: 10.1016/j.apcatb.2017.01.013
    [28] Gao Y, Qian K, Xu B T, et al. Designing 2D–2D g-C3N4/Ag: ZnIn2S4 nanocomposites for the high-performance conversion of sunlight energy into hydrogen fuel and the meaningful reduction of pollution. RSC Adv, 2020, 10(54): 32652 doi: 10.1039/D0RA06226J
    [29] Long D, Chen W L, Rao X, et al. Synergetic effect of C60/g-C3N4 nanowire composites for enhanced photocatalytic H2 evolution under visible light irradiation. ChemCatChem, 2020, 12(7): 2022 doi: 10.1002/cctc.201901958
    [30] Cui Z H, Dong X A, Sun Y J, et al. Simultaneous introduction of oxygen vacancies and Bi metal onto the {001} facet of Bi3O4Cl woven nanobelts for synergistically enhanced photocatalysis. Nanoscale, 2018, 10(35): 16928 doi: 10.1039/C8NR05322G
    [31] Weon S, Choi E, Kim H, et al. Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: From material development to commercial indoor air cleaner application. Environ Sci Technol, 2018, 52(16): 9330 doi: 10.1021/acs.est.8b02282
    [32] Wang X, Sun G, Li N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev, 2016, 45(8): 2239 doi: 10.1039/C5CS00811E
    [33] Bandyopadhyay A, Ghosh D, Kaley N M, et al. Photocatalytic activity of g-C3N4 quantum dots in visible light: Effect of physicochemical modifications. J Phys Chem C, 2017, 121(3): 1982 doi: 10.1021/acs.jpcc.6b11520
    [34] Zhou L, Tian Y H, Lei J Y, et al. Self-modification of g-C3N4 with its quantum dots for enhanced photocatalytic activity. Catal Sci Technol, 2018, 8(10): 2617 doi: 10.1039/C8CY00351C
    [35] Zheng C, Qiu X, Han J, et al. Zero-dimensional-g-CNQD-coordinated two-dimensional porphyrin MOF hybrids for boosting photocatalytic CO2 reduction. ACS Appl Mater Interfaces, 2019, 11(45): 42243 doi: 10.1021/acsami.9b15306
    [36] Zhou B X, Ding S S, Wang Y, et al. Type-II/type-II band alignment to boost spatial charge separation: A case study of g-C3N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale, 2020, 12(10): 6037 doi: 10.1039/D0NR00176G
    [37] Zhang L S, Ding N, Lou L C, et al. Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv Funct Mater, 2019, 29(3): 1806774 doi: 10.1002/adfm.201806774
    [38] Tian N, Xiao K, Zhang Y H, et al. Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction. Appl Catal B:Environ, 2019, 253: 196 doi: 10.1016/j.apcatb.2019.04.036
    [39] Desalegn B Z, Jadhav H S, Seo J G. Highly efficient g-C3N4 nanorods with dual active sites as an electrocatalyst for the oxygen evolution reaction. Chem Cat Chem, 2019, 11(12): 2870 doi: 10.1002/cctc.201900330
    [40] Zeng Y X, Liu X, Liu C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl Catal B:Environ, 2018, 224: 1 doi: 10.1016/j.apcatb.2017.10.042
    [41] Mo Z, Xu H, Chen Z G, et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl Catal B:Environ, 2018, 225: 154 doi: 10.1016/j.apcatb.2017.11.041
    [42] Zhao X, Zhang Y, Zhao X, et al. Urea and melamine formaldehyde resin-derived tubular g-C3N4 with highly efficient photocatalytic performance. ACS Appl Mater Interfaces, 2019, 11(31): 27934 doi: 10.1021/acsami.9b08483
    [43] Liu Q X, Zeng C M, Xie Z H, et al. Cobalt@nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Appl Catal B:Environ, 2019, 254: 443 doi: 10.1016/j.apcatb.2019.04.098
    [44] Ai L H, Su J F, Wang M, et al. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: An efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem Eng, 2018, 6(8): 9912 doi: 10.1021/acssuschemeng.8b01120
    [45] Zhao S, Fang J S, Wang Y Y, et al. Poly(ionic liquid)-assisted synthesis of open-ended carbon nitride tube for efficient photocatalytic hydrogen evolution under visible-light irradiation. ACS Sustainable Chem Eng, 2019, 7(11): 10095 doi: 10.1021/acssuschemeng.9b01544
    [46] Yang L Q, Huang J F, Shi L, et al. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl Catal B:Environ, 2017, 204: 335 doi: 10.1016/j.apcatb.2016.11.047
    [47] Fu J W, Xu Q L, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B:Environ, 2019, 243: 556 doi: 10.1016/j.apcatb.2018.11.011
    [48] Sun S, Liang S. Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale, 2017, 9(30): 10544 doi: 10.1039/C7NR03656F
    [49] Yang P J, Ou H H, Fang Y X, et al. A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angewandte Chemie Int Ed, 2017, 56(14): 3992 doi: 10.1002/anie.201700286
    [50] Wang W, Fang J J, Chen H, et al. Rice-husk-derived mesoporous 0D/2D C3N4 isotype heterojunction with improved quantum effect for photodegradation of tetracycline antibiotics. Ceram Int, 2019, 45(2): 2234 doi: 10.1016/j.ceramint.2018.10.136
    [51] Lin B, An H, Yan X Q, et al. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Appl Catal B:Environ, 2017, 210: 173 doi: 10.1016/j.apcatb.2017.03.066
    [52] Yuan Y J, Shen Z K, Wu S T, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl Catal B:Environ, 2019, 246: 120 doi: 10.1016/j.apcatb.2019.01.043
    [53] Zhao G, Cheng Y L, Wu Y Z, et al. New 2D carbon nitride organic materials synthesis with huge-application prospects in CN photocatalyst. Small, 2018, 14(15): 1704138 doi: 10.1002/smll.201704138
    [54] Shu Z, Wang Y, Wang W, et al. A green one-pot approach for mesoporous g-C3N4 nanosheets with in situ sodium doping for enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy, 2019, 44(2): 748 doi: 10.1016/j.ijhydene.2018.11.025
    [55] Li X B, Xiong J, Gao X M, et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J Alloys Compd, 2019, 802: 196 doi: 10.1016/j.jallcom.2019.06.185
    [56] Liu M, Wageh S, Al-Ghamdi A A, et al. Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity. Chem Commun (Camb), 2019, 55(93): 14023 doi: 10.1039/C9CC07647F
    [57] Cao Y Z, Gao Q, Li Q, et al. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity. RSC Adv, 2017, 7(65): 40727 doi: 10.1039/C7RA06774G
    [58] Fang Z Y, Hong Y Z, Li D, et al. One-step nickel foam assisted synthesis of holey G-carbon nitride nanosheets for efficient visible-light photocatalytic H2 evolution. ACS Appl Mater Interfaces, 2018, 10(24): 20521 doi: 10.1021/acsami.8b04783
    [59] Yu W W, Zhang T, Zhao Z K. Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highly-efficient visible-light-driven photoredox catalysis. Appl Catal B:Environ, 2020, 278: 119342 doi: 10.1016/j.apcatb.2020.119342
    [60] Xu J S, Wang H, Zhang C, et al. From millimeter to subnanometer: Vapor-solid deposition of carbon nitride hierarchical nanostructures directed by supramolecular assembly. Angewandte Chemie, 2017, 129(29): 8546 doi: 10.1002/ange.201611946
    [61] Tong Z W, Yang D, Zhao X Y, et al. Bio-inspired synthesis of three-dimensional porous g-C3N4@carbon microflowers with enhanced oxygen evolution reactivity. Chem Eng J, 2018, 337: 312 doi: 10.1016/j.cej.2017.12.064
    [62] Ba G M, Liang Z W, Li H P, et al. Synthesis of hierarchically mesoporous polymeric carbon nitride with mesoporous melamine as a precursor for enhanced photocatalytic performance. Chem Eng J, 2020, 380: 122535 doi: 10.1016/j.cej.2019.122535
    [63] Zheng Y, Lin L H, Wang B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angewandte Chemie Int Ed, 2015, 54(44): 12868 doi: 10.1002/anie.201501788
    [64] Yuan J L, Yi X Y, Tang Y H, et al. Efficient photocatalytic hydrogen evolution and CO2 reduction: enhanced light absorption, charge separation, and hydrophilicity by tailoring terminal and linker units in g-C3N4. ACS Appl Mater Interfaces, 2020, 12: 19607 doi: 10.1021/acsami.0c04028
    [65] Wang K, Fu J L, Zheng Y. Insights into photocatalytic CO2 reduction on C3N4: Strategy of simultaneous B, K co-doping and enhancement by N vacancies. Appl Catal B:Environ, 2019, 254: 270 doi: 10.1016/j.apcatb.2019.05.002
    [66] Yang C, Zhang S S, Huang Y, et al. Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Appl Surf Sci, 2020, 505: 144654 doi: 10.1016/j.apsusc.2019.144654
    [67] Liu B, Ye L, Wang R, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl Mater Interfaces, 2018, 10(4): 4001 doi: 10.1021/acsami.7b17503
    [68] Yan Q, Huang G F, Li D F, et al. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets. J Mater Sci Technol, 2018, 34(12): 2515 doi: 10.1016/j.jmst.2017.06.018
    [69] Sun S D, Li J, Cui J, et al. Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. Int J Hydrog Energy, 2019, 44(2): 778 doi: 10.1016/j.ijhydene.2018.11.019
    [70] Wang C, Fan H Q, Ren X H, et al. Hydrothermally induced oxygen doping of graphitic carbon nitride with a highly ordered architecture and enhanced photocatalytic activity. ChemSusChem, 2018, 11(4): 700 doi: 10.1002/cssc.201702278
    [71] Iqbal W, Yang B, Zhao X, et al. Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance. Catal Sci Technol, 2020, 10(2): 549 doi: 10.1039/C9CY02111F
    [72] Zhu Y H, Gong L L, Zhang D T, et al. Catalytic origin and universal descriptors of heteroatom-doped photocatalysts for solar fuel production. Nano Energy, 2019, 63: 103819 doi: 10.1016/j.nanoen.2019.06.015
    [73] Li Y L, Xu X F, Wang J S, et al. Post-redox engineering electron configurations of atomic thick C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Appl Catal B:Environ, 2020, 270: 118855 doi: 10.1016/j.apcatb.2020.118855
    [74] Luo W, Li Y L, Wang J S, et al. Asymmetric structure engineering of polymeric carbon nitride for visible-light-driven reduction reactions. Nano Energy, 2021, 87: 106168 doi: 10.1016/j.nanoen.2021.106168
    [75] Wang L Y, Wang K H, He T T, et al. Graphitic carbon nitride-based photocatalytic materials: Preparation strategy and application. ACS Sustain Chem Eng, 2020, 8(43): 16048 doi: 10.1021/acssuschemeng.0c05246
    [76] Li X H, Zhang J, Zhou F, et al. Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chin J Catal, 2018, 39(6): 1090 doi: 10.1016/S1872-2067(18)63046-3
    [77] Tu W G, Xu Y, Wang J J, et al. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustain Chem Eng, 2017, 5(8): 7260 doi: 10.1021/acssuschemeng.7b01477
    [78] Liang Q H, Li Z, Huang Z H, et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater, 2015, 25(44): 6885 doi: 10.1002/adfm.201503221
    [79] Li Y F, Yang M, Xing Y, et al. Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small, 2017, 13(33): 1701552 doi: 10.1002/smll.201701552
    [80] Bai T Y, Shi X F, Liu M, et al. g-C3N4/ZnCdS heterojunction for efficient visible light-driven photocatalytic hydrogen production. RSC Adv, 2021, 11: 38120 doi: 10.1039/D1RA05894K
    [81] Rhimi B, Wang C Y, Bahnemann D W. Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: A mini review. J Phys Energy, 2020, 2(4): 042003 doi: 10.1088/2515-7655/abb782
    [82] Huang D L, Yan X L, Yan M, et al. Graphitic carbon nitride-based heterojunction photoactive nanocomposites: Applications and mechanism insight. ACS Appl Mater Interfaces, 2018, 10(25): 21035 doi: 10.1021/acsami.8b03620
    [83] Fu J W, Yu J G, Jiang C J, et al. G-C3N4-based heterostructured photocatalysts. Adv Energy Mater, 2018, 8(3): 1701503 doi: 10.1002/aenm.201701503
    [84] Kong Z Z, Chen X Z, Ong W J, et al. Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis. Appl Surf Sci, 2019, 463: 1148 doi: 10.1016/j.apsusc.2018.09.026
    [85] Ong W J, Putri L K, Tan Y C, et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res, 2017, 10(5): 1673 doi: 10.1007/s12274-016-1391-4
    [86] Shen L Y, Xing Z P, Zou J L, et al. Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci Rep, 2017, 7: 41978 doi: 10.1038/srep41978
    [87] Yang L Q, Huang J F, Shi L, et al. Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl Catal B:Environ, 2018, 221: 670 doi: 10.1016/j.apcatb.2017.09.041
    [88] Afroz K, Moniruddin M, Bakranov N, et al. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J Mater Chem A, 2018, 6(44): 21696 doi: 10.1039/C8TA04165B
    [89] Kumar A, Raizada P, Singh P, et al. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem Eng J, 2020, 391: 123496 doi: 10.1016/j.cej.2019.123496
    [90] Jiang D L, Ma W X, Xiao P, et al. Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator. J Colloid Interface Sci, 2018, 512: 693 doi: 10.1016/j.jcis.2017.10.074
    [91] Wu M Q, Ding T, Wang Y T, et al. Rational construction of plasmon Au assisted ferroelectric-BaTiO3/Au/g-C3N4 Z-scheme system for efficient photocatalysis. Catal Today, 2020, 355: 311 doi: 10.1016/j.cattod.2019.04.061
    [92] Jo W K, Selvam N C S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem Eng J, 2017, 317: 913 doi: 10.1016/j.cej.2017.02.129
    [93] Bafaqeer A, Tahir M, Ali Khan A, et al. Indirect Z-scheme assembly of 2D ZnV2O6/RGO/g-C3N4 nanosheets with RGO/pCN as solid-state electron mediators toward visible-light-enhanced CO2 reduction. Ind Eng Chem Res, 2019, 58(20): 8612 doi: 10.1021/acs.iecr.8b06053
    [94] Yang Y, Wu J J, Xiao T T, et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Appl Catal B:Environ, 2019, 255: 117771 doi: 10.1016/j.apcatb.2019.117771
    [95] Zhao D M, Wang Y Q, Dong C L, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy, 2021, 6(4): 388 doi: 10.1038/s41560-021-00795-9
    [96] Shen R C, He K L, Zhang A P, et al. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl Catal B:Environ, 2021, 291: 120104 doi: 10.1016/j.apcatb.2021.120104
    [97] Ren D D, Zhang W N, Ding Y N, et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution. Sol RRL, 2020, 4(8): 1900423 doi: 10.1002/solr.201900423
    [98] Liu D N, Chen D Y, Li N J, et al. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide. Small, 2019, 15(31): 1902291 doi: 10.1002/smll.201902291
  • 加載中
圖(11)
計量
  • 文章訪問數:  1859
  • HTML全文瀏覽量:  787
  • PDF下載量:  201
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-01
  • 網絡出版日期:  2021-10-19
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回