<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

硅鐵合金中金屬鈣元素對鋁脫氧鋼中夾雜物的影響

劉南 成功 任英 張立峰

劉南, 成功, 任英, 張立峰. 硅鐵合金中金屬鈣元素對鋁脫氧鋼中夾雜物的影響[J]. 工程科學學報, 2022, 44(12): 2069-2080. doi: 10.13374/j.issn2095-9389.2021.05.12.004
引用本文: 劉南, 成功, 任英, 張立峰. 硅鐵合金中金屬鈣元素對鋁脫氧鋼中夾雜物的影響[J]. 工程科學學報, 2022, 44(12): 2069-2080. doi: 10.13374/j.issn2095-9389.2021.05.12.004
LIU Nan, CHENG Gong, REN Ying, ZHANG Li-feng. Effect of calcium in ferrosilicon alloys on inclusions in Al-killed steel[J]. Chinese Journal of Engineering, 2022, 44(12): 2069-2080. doi: 10.13374/j.issn2095-9389.2021.05.12.004
Citation: LIU Nan, CHENG Gong, REN Ying, ZHANG Li-feng. Effect of calcium in ferrosilicon alloys on inclusions in Al-killed steel[J]. Chinese Journal of Engineering, 2022, 44(12): 2069-2080. doi: 10.13374/j.issn2095-9389.2021.05.12.004

硅鐵合金中金屬鈣元素對鋁脫氧鋼中夾雜物的影響

doi: 10.13374/j.issn2095-9389.2021.05.12.004
基金項目: 國家自然科學基金資助項目(U1860206, 51725402);河北省省級科技計劃資助項目(20311004D, 20311005D, 20311006D, 20591001D)
詳細信息
    通訊作者:

    成功,E-mail: chenggong_ustb@163.com

    任英,E-mail: yingren@ustb.edu.cn

    張立峰,E-mail: zhanglifeng@ncut.edu.cn

  • 中圖分類號: TF777.1

Effect of calcium in ferrosilicon alloys on inclusions in Al-killed steel

More Information
  • 摘要: 大尺寸CaO?Al2O3類夾雜物容易引起軸承鋼疲勞失效,大尺寸CaO?Al2O3類夾雜物的控制是生產高端GCr15軸承鋼的關鍵因素之一。精煉過程中合金引入雜質元素、渣精煉和精煉過程中卷渣是鋁脫氧軸承鋼中大尺寸CaO?Al2O3類夾雜物的主要潛在來源。硅鐵合金通常用來提高軸承鋼的淬火和抗回火軟化性。本文通過實驗室實驗、樣品分析和熱力學計算,研究了硅鐵合金中金屬鈣元素對鋁脫氧鋼中夾雜物的影響。硅鐵合金主要由深色的硅相和淺色的硅鐵相組成,鈣元素在硅相和硅鐵相的界面處以金屬化合物形式存在。研究發現,加入硅鐵合金后,鋼中總鈣(T.Ca)含量增加,鋼中的Al2O3和MgO·Al2O3夾雜物被改性為CaO?Al2O3類夾雜物,夾雜物尺寸隨著夾雜物中CaO含量增加而減小,鋼中并未生成大尺寸CaO?Al2O3類夾雜物。隨著鋼中T.Ca含量增加,夾雜物平均尺寸降低,鋼中T.O含量增加,表明硅鐵合金中金屬鈣元素不會直接引起鋼中大尺寸CaO?Al2O3類夾雜物的生成。但是生成的小尺寸固相CaO?Al2O3類夾雜物在水口處粘附結瘤,結瘤物脫落后會成為鋼中大尺寸CaO?Al2O3類夾雜物的來源之一。

     

  • 圖  1  不同鈣質量分數的硅鐵合金樣品的元素面掃描. (a) 0.68%; (b) 0.92%; (c) 1.22%

    Figure  1.  Elemental mapping of ferrosilicon alloys containing various T.Ca mass fraction: (a) 0.68%; (b) 0.92%; (c) 1.22%

    圖  2  實驗室實驗后得到的鋼錠樣品分析示意圖

    Figure  2.  Schematic diagram analysis of the ingot sample after experiments

    圖  3  加不同鈣含量的硅鐵條件下鋼中夾雜物成分分布. (a) 未加硅鐵; (b) 0.68% T.Ca; (c) 0.92% T.Ca; (d) 1.22% T.Ca

    Figure  3.  Composition distribution of inclusions in the steel on adding various types of ferrosilicon alloys: (a) not adding a ferrosilicon alloy; (b) 0.68% T.Ca; (c) 0.92% T.Ca; (d) 1.22% T.Ca

    圖  4  不加硅鐵條件下鋼中典型夾雜物形貌. (a) Al2O3; (b) MgO·Al2O3; (c) Al2O3?(MgO?CaO)

    Figure  4.  Morphologies of typical inclusions in the steel without adding a ferrosilicon alloy: (a) Al2O3; (b) MgO·Al2O3; (c) Al2O3?(MgO?CaO)

    圖  5  加入鈣質量分數1.22%的硅鐵條件下鋼中典型夾雜物形貌. (a) CaO?Al2O3?(MgO); (b) CaO?Al2O3?(MgO); (c) MgO?Al2O3?(CaO)

    Figure  5.  Morphologies of typical inclusions in the steel after adding the ferrosilicon alloy containing 1.22% T.Ca: (a) CaO?Al2O3?(MgO); (b) CaO?Al2O3?(MgO); (c) MgO?Al2O3?(CaO)

    圖  6  鋼中鈣質量分數和夾雜物成分隨著加入含鈣不同的硅鐵合金的變化

    Figure  6.  Variation in the calcium content and the composition of steel inclusions after adding ferrosilicon alloy containing different calcium contents

    圖  7  硅鐵合金的加入對鋼中夾雜物數量的影響. (a) 不同尺寸; (b) 不同成分

    Figure  7.  Effect of adding ferrosilicon alloy on the number of inclusions in the steel: (a) various sizes; (b) various compositions

    圖  8  浸入式水口結瘤物三維形貌. (a) MgO?Al2O3?(CaO); (b) MgO?Al2O3?CaO; (c) CaO?Al2O3?(MgO)

    Figure  8.  Three-dimensional morphologies of clogging materials on the submerged entry nozzle: (a) MgO?Al2O3?(CaO); (b) MgO?Al2O3?CaO; (c) CaO?Al2O3?(MgO)

    圖  9  浸入式水口不同位置處結瘤物成分

    Figure  9.  Composition of clogging materials at various locations of the submerged entry nozzle

    圖  10  加入不同含鈣量的硅鐵條件下鋼中夾雜物和水口結瘤物的成分對比. (a) 未加硅鐵; (b) 0.68% T.Ca; (c) 0.92% T.Ca; (d) 1.22% T.Ca

    Figure  10.  Composition comparison of clogging materials on the submerged entry nozzle and inclusions in the steel by adding ferrosilicon alloy containing different T.Ca contents: (a) not adding ferrosilicon alloy; (b) 0.68% T.Ca; (c) 0.92% T.Ca; (d) 1.22% T.Ca

    圖  11  不加硅鐵條件下鋼中夾雜物成分和尺寸的關系. (a) CaO質量分數和Al2O3質量分數; (b) MgO質量分數

    Figure  11.  Relationship between the size and composition of steel inclusions without adding ferrosilicon alloy: (a) CaO content and Al2O3 content; (b) MgO content

    圖  12  加入含鈣0.68%的硅鐵條件下鋼中夾雜物成分和尺寸的關系. (a) CaO質量分數和Al2O3質量分數; (b) MgO質量分數

    Figure  12.  Relationship between the size and composition of steel inclusions after adding ferrosilicon alloy containing 0.68% T.Ca: (a) CaO content and Al2O3 content; (b) MgO content

    圖  13  加入鈣質量分數0.92%的硅鐵條件下鋼中夾雜物成分和尺寸的關系. (a) CaO質量分數和Al2O3質量分數; (b) MgO質量分數

    Figure  13.  Relationship between the size and composition of steel inclusions after adding ferrosilicon alloy containing 0.9% T.Ca: (a) CaO content and Al2O3 content; (b) MgO content

    圖  14  加入鈣質量分數1.22%的硅鐵條件下鋼中夾雜物成分和尺寸的關系. (a) CaO質量分數和Al2O3質量分數; (b) MgO質量分數

    Figure  14.  Relationship between the size and composition of steel inclusions after adding ferrosilicon alloy containing 1.22% T.Ca: (a) CaO content and Al2O3 content; (b) MgO content

    圖  15  實驗室加硅鐵實驗鋁脫氧鋼中夾雜物尺寸隨著夾雜物中CaO含量的變化

    Figure  15.  Relationship between the CaO content and the diameter of inclusions in the Al-killed steel after adding ferrosilicon alloy containing different T.Ca contents

    圖  16  鋼中T.Ca含量對夾雜物平均尺寸和T.O含量的影響. (a) 夾雜物平均尺寸; (b) T.O含量

    Figure  16.  Effect of the T.Ca content on the average diameter of inclusions and the T.O content in the steel: (a) average diameter of inclusions; (b) T.O content

    圖  17  1873 K下向鋼中加入硅鐵合金引起的鈣含量增加對鋁脫氧鋼中夾雜物的影響. (a) T.O為 15×10?6; (b) T.O為8×10?6

    Figure  17.  Effect of the T.Ca content in the steel from ferrosilicon addition on the number of inclusions in the Al-killed steel at 1873 K: (a) T.O of 15×10?6; (b) T.O of 8×10?6

    圖  18  1873 K下硅鐵合金加入引起的鈣含量增加對鋁脫氧鋼中夾雜物成分的影響

    Figure  18.  Effect of the T.Ca content in the steel from ferrosilicon addition on the inclusion composition in the Al-killed steel at 1873 K

    表  1  硅鐵合金中鈣和鋁的質量分數

    Table  1.   Mass fraction of T.Ca and T.Al in ferrosilicon alloys %

    FerrosiliconT.CaT.Al
    Type A0.681.11
    Type B0.921.28
    Type C1.221.84
    下載: 導出CSV

    表  2  實驗后鋼成分(質量分數)

    Table  2.   Steel compositions after experiments %

    FerrosiliconCCrSiMnT.ST.AlT.CaT.OFe
    No addition0.991.570.310.380.0010.0300.00010.0010Balanced
    Type A0.971.570.630.380.0010.0330.00030.0011Balanced
    Type B0.961.570.620.380.0010.0360.00040.0013Balanced
    Type C1.001.570.650.380.0010.0370.00100.0015Balanced
    下載: 導出CSV

    表  3  文獻報道的 1873 K下γIGθα和計算的對應cWad

    Table  3.   Reported γIG, θ, α from literatures, and calculated c, Wad

    Mass fraction of inclusions/%$\gamma_{\text{IG} }$/(J·m?2)$ \theta $/(°)$ \alpha $/(°)$\gamma_{\text{MI} }$/(J·m?2)$ c $$W_{\text{ad} }$/(J·m?2)
    CaOAl2O3MgO
    58.042.000.688[37]54.3[37]35.7[37]1.2060.5771.178
    49.450.600.669[37]58.1[37]38.6[37]1.2450.5811.120
    36.463.400.684[37]65.9[37]44.8[37]1.3030.5871.077
    20.080.000.619[41]112.7[42]1.2730.5841.041
    15.085.000.638[41]112.7[42]1.2920.5861.041
    10.090.000.659[41]115.2[42]1.3810.5960.974
    5.095.000.692[41]123.4[42]1.6260.6200.762
    071.728.30.512[43]140.2[44]1.8150.6370.393
    0100.000.750[36]144.0[45]2.1220.6610.324
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang L F. Non-metallic Inclusions in Steel: Fundamentals. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
    [2] Zhang L F. Nonmetallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019
    [3] Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(Suppl 1): 31

    李明, 王新成, 段加恒, 等. 軸承鋼中D類夾雜物的形成與控制. 工程科學學報, 2018, 40(增刊1): 31
    [4] Sugimoto S, Oi S. Development of high productivity process of ultra-high-cleanliness bearing steel. Sanyo Technical Report, 2018, 25(1): 50

    杉本晉一郎, 大井茂博. 超高清浄度軸受鋼の高生産性プロセスの開発. 山陽特殊製鋼技報, 2018, 25(1):50
    [5] Long H, Cheng G G, Qiu W S, et al. Characteristics, sources analysis of large size inclusions and technical improvement during bearing steel production. China Metall, 2020, 30(9): 53 doi: 10.13228/j.boyuan.issn1006-9356.20200329

    龍鵠, 成國光, 丘文生, 等. 軸承鋼中大尺寸夾雜物的特征、來源及改進工藝. 中國冶金, 2020, 30(9):53 doi: 10.13228/j.boyuan.issn1006-9356.20200329
    [6] Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue behavior of bearing steel with rare earth addition. Int J Fatigue, 2020, 131: 105263 doi: 10.1016/j.ijfatigue.2019.105263
    [7] Yang C Y, Liu P, Luan Y K, et al. Study on transverse-longitudinal fatigue properties and their effective-inclusion-size mechanism of hot rolled bearing steel with rare earth addition. Int J Fatigue, 2019, 128: 105193 doi: 10.1016/j.ijfatigue.2019.105193
    [8] Gu C, Bao Y P, Gan P, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels. Steel Res Int, 2018, 89(9): 1800129 doi: 10.1002/srin.201800129
    [9] Kawakami K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel. Sanyo Technical Report, 2007, 14(1): 22

    川上潔. 高清浄度鋼における介在物の生成起源. 山陽特殊製鋼技報, 2007, 14(1):22
    [10] Ohta H, Kimura S, Mimura T, et al. Behavior of CaO containing inclusions during ladle refining of ultraclean bearing steel. Kobe Steel Eng Rep, 2011, 61(1): 98

    太田裕己, 木村世意, 三村毅, 等. 超清浄軸受鋼の取鍋精錬時におけるCaO含有介在物の挙動. 神戸製鋼技報, 2011, 61(1):98
    [11] Chi Y G, Deng Z Y, Zhu M Y. Effect of ladle usage on cleanliness of bearing steel. Metall Mater Trans B, 2018, 49(1): 440 doi: 10.1007/s11663-017-1150-2
    [12] Ma W J, Bao Y P, Wang M, et al. Effect of Mg and Ca treatment on behavior and particle size of inclusions in bearing steels. ISIJ Int, 2014, 54(3): 536 doi: 10.2355/isijinternational.54.536
    [13] Zhu S X, Yu Z, Yin H, et al. Investigation on relationship between nozzle clogging and large inclusions in bearing steel bars. Steelmaking, 2017, 33(1): 73

    朱守欣, 于湛, 殷皓, 等. 軸承鋼水口結瘤與棒材中大型夾雜物關系研究. 煉鋼, 2017, 33(1):73
    [14] Riyahimalayeri K, ?lund P, Selleby M. Effect of vacuum degassing on non-metallic inclusions in an ASEA-SKF ladle furnace. Ironmak Steelmak, 2013, 40(6): 470 doi: 10.1179/174328113X13711140547880
    [15] Gong W, Jiang Z H, Zhan D P, et al. Thermodynamic analysis of magnesium behavior in bearing steel. Chin J Process Eng, 2009, 9(Suppl 1): 117

    龔偉, 姜周華, 戰東平, 等. 軸承鋼中鎂的行為熱力學分析. 過程工程學報, 2009, 9(增刊1): 117
    [16] Chen X Y, Jiang Z H, Zhu M Y, et al. Modification behavior of magnesium on alumina inclusion in bearing steel GCr15. Special Steel, 2009, 30(4): 11 doi: 10.3969/j.issn.1003-8620.2009.04.004

    陳向陽, 姜周華, 朱苗勇, 等. 鎂對GCr15軸承鋼中氧化鋁夾雜的變質行為. 特殊鋼, 2009, 30(4):11 doi: 10.3969/j.issn.1003-8620.2009.04.004
    [17] Wang B, Jiang Z H, Jiang M F. Inclusion modification in GCr15 bearing steel with Al-Mg alloy treatment. Chin J Nonferrous Met, 2006, 16(10): 1736 doi: 10.3321/j.issn:1004-0609.2006.10.014

    王博, 姜周華, 姜茂發. 鎂鋁合金處理GCr15軸承鋼夾雜物的變質. 中國有色金屬學報, 2006, 16(10):1736 doi: 10.3321/j.issn:1004-0609.2006.10.014
    [18] Yang C Y, Zhuang Q, Liu H, et al. Analysis on modification behavior of rare earth to inclusions in highly clean bearing steel. China Metall, 2020, 30(9): 45

    楊超云, 莊權, 劉航, 等. 稀土變質高潔凈軸承鋼中夾雜物的行為分析. 中國冶金, 2020, 30(9):45
    [19] Dong D X, Yang C Y, Hu Y S, et al. Analysis on modification behavior of rare earth to inclusions in high clean bearing steel. China Metall, 2020, 30(6): 30

    董大西, 楊超云, 胡云生, 等. 高潔凈軸承鋼中稀土變質夾雜物行為分析. 中國冶金, 2020, 30(6):30
    [20] Yang C Y, Luan Y K, Li D Z, et al. Effect of RE on inclusions in highly clean bearing steel. Steelmaking, 2016, 32(4): 54

    楊超云, 欒義坤, 李殿中, 等. 稀土元素對高潔凈度軸承鋼中夾雜物的影響研究. 煉鋼, 2016, 32(4):54
    [21] Li J X, Tang P, Pan Y H, et al. Thermodynamic analysis of the relationship between refining slag composition and inclusion type in bearing steel. Chin J Eng, 2016, 38(Suppl 1): 195

    李敬想, 唐萍, 潘銀虎, 等. 精煉渣成分與軸承鋼夾雜物類型關系熱力學分析. 工程科學學報, 2016, 38(增刊1): 195
    [22] Ruan X J, Jiang Z H, Gong W, et al. Influence of refining slag on oxygen content and inclusions in bearing steel. Special Steel, 2008, 29(5): 1 doi: 10.3969/j.issn.1003-8620.2008.05.001

    阮小江, 姜周華, 龔偉, 等. 精煉渣對軸承鋼中氧含量和夾雜物的影響. 特殊鋼, 2008, 29(5):1 doi: 10.3969/j.issn.1003-8620.2008.05.001
    [23] Cheng G, Zhang L F, Ren Y. Characterization and evolution of non-metallic inclusions in GCr15 bearing steels during cooling and solidification. Ironmak Steelmak, 2020, 47(10): 1217 doi: 10.1080/03019233.2020.1719315
    [24] Zhang Y X, Zhang L F, Chu Y P, et al. Transformation of inclusions in a complicated-deoxidized heavy rail steels during heating. Steel Res Int, 2020, 91(9): 2000120 doi: 10.1002/srin.202000120
    [25] Wang Y, Yang W, Zhang L F. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel. Steel Res Int, 2019, 90(7): 1900027 doi: 10.1002/srin.201900027
    [26] Chen W B, Ren Y, Xu H K, et al. Evolution of inclusions in solid stainless steels during heat treatment process. Iron Steel, 2018, 53(10): 38

    陳為本, 任英, 徐海坤, 等. 熱處理過程固態不銹鋼中夾雜物的轉變. 鋼鐵, 2018, 53(10):38
    [27] Yang W, Guo C B, Li C, et al. Transformation of inclusions in pipeline steels during solidification and cooling. Metall Mater Trans B, 2017, 48(5): 2267 doi: 10.1007/s11663-017-1012-y
    [28] Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in type 304 stainless steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
    [29] Taniguchi S, Kikuchi A. Mechanisms of collision and coagulation between fine particles in fluid. Tetsu-to-Hagane, 1992, 78(4): 527 doi: 10.2355/tetsutohagane1955.78.4_527
    [30] Saffman P G, Turner J S. On the collision of drops in turbulent clouds. J Fluid Mech, 1956, 1(1): 16 doi: 10.1017/S0022112056000020
    [31] Frenkel J. Kinetic Theory of Liquids, Chapter VI. New York: Dover Publications, 1955
    [32] Cramb A W, Jimbo I. Calculation of the interfacial properties of liquid steel - slag systems. Steel Res, 1989, 60(3-4): 157 doi: 10.1002/srin.198900893
    [33] Bretonnet J, Lucas L, Olette M. Experimental determination of the interfacial tensions between Fe-C alloys and molten slags. C R Hebd Seances Acad Sci, 1977, 285(2): 45
    [34] Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139

    程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面現象. 工程科學學報, 2018, 40(10):1139
    [35] Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking. Chin J Eng, 2018, 40(12): 1434

    程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎. 工程科學學報, 2018, 40(12):1434
    [36] Nogi K, Ogino K. Role of interfacial phenomena in deoxidation process of molten iron. Can Metall Q, 1983, 22(1): 19 doi: 10.1179/cmq.1983.22.1.19
    [37] Bretonnet J, Lucas L, Olette M. Experimental method for the study of the interfacial properties between liquid metals and liquid slags. C R Hebd Seances Acad Sci, 1975, 280(19): 1169
    [38] Tian Q R, Wang G C, Shang D L, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B, 2018, 49(6): 3137 doi: 10.1007/s11663-018-1411-8
    [39] Nakajima K, Mu W Z, J?nsson P G. Assessment of a simplified correlation between wettability measurement and dispersion/coagulation potency of oxide particles in ferrous alloy melt. Metall Mater Trans B, 2019, 50(5): 2229 doi: 10.1007/s11663-019-01624-x
    [40] Mu W Z, J?nsson P G, Nakajima K. Prediction of intragranular ferrite nucleation from TiO, TiN, and VN inclusions. J Mater Sci, 2016, 51(4): 2168 doi: 10.1007/s10853-015-9527-6
    [41] Choi J Y, Lee H G. Thermodynamic evaluation of the surface tension of molten CaO?SiO2?Al2O3 ternary slag. ISIJ Int, 2002, 42(3): 221 doi: 10.2355/isijinternational.42.221
    [42] Shinozaki N, Echida N, Mukai K, et al. Wettability of Al2O3?MgO, ZrO2?CaO, Al2O3?CaO substrates with molten iron. Tetsu-to-Hagane, 1994, 80(10): 748 doi: 10.2355/tetsutohagane1955.80.10_748
    [43] Yang G W, Wang X H, Huang F X, et al. Transient inclusion evolution during RH degassing. Steel Res Int, 2014, 85(1): 26 doi: 10.1002/srin.201300030
    [44] Shen P. Study on Interfacial Phenomenon among Steel‒Slag‒Lining Refractory System [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    沈平. 冶金過程鋼液‒渣‒耐火材料間界面現象研究[學位論文]. 北京: 北京科技大學, 2017
    [45] Sun L Y. Removal Behavior of Non-metallic Inclusions at the Interface of Slag and Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2013

    孫麗媛. 非金屬夾雜物在鋼渣界面的去除行為研究[學位論文]. 北京: 北京科技大學, 2013
  • 加載中
圖(18) / 表(3)
計量
  • 文章訪問數:  684
  • HTML全文瀏覽量:  268
  • PDF下載量:  115
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-12
  • 網絡出版日期:  2021-08-03
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回