<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于一維卷積特征與手工特征融合的集成超限學習機心跳分類方法

許越凡 肖文棟 曹征濤

許越凡, 肖文棟, 曹征濤. 基于一維卷積特征與手工特征融合的集成超限學習機心跳分類方法[J]. 工程科學學報, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005
引用本文: 許越凡, 肖文棟, 曹征濤. 基于一維卷積特征與手工特征融合的集成超限學習機心跳分類方法[J]. 工程科學學報, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005
XU Yue-fan, XIAO Wen-dong, CAO Zheng-tao. Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features[J]. Chinese Journal of Engineering, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005
Citation: XU Yue-fan, XIAO Wen-dong, CAO Zheng-tao. Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features[J]. Chinese Journal of Engineering, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005

基于一維卷積特征與手工特征融合的集成超限學習機心跳分類方法

doi: 10.13374/j.issn2095-9389.2021.01.12.005
基金項目: 國家重點研發計劃課題資助項目(2017YFB1401203);佛山市科技創新專項資金資助項目(BK20AF005)
詳細信息
    通訊作者:

    E-mail: czhengtao@126.com

  • 中圖分類號: TP182

Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features

More Information
  • 摘要: 融合手工特征和深度特征,提出了一種集成超限學習機心跳分類方法。手工提取的特征明確地表征了心電信號的特定特性,如相鄰心跳時間間隔反映了心跳信號的時域特性,小波系數反映了心跳信號的時頻特性。同時設計了一維卷積神經網絡對心跳信號特征進行自動提取。基于超限學習機(Extreme leaning machine,ELM),將上述特征融合進行心跳分類。由于ELM初始參數的隨機給定可能導致其性能不穩定,進一步提出了一種基于袋裝(Bagging)策略的多個ELM集成方法,使分類結果更加穩定且模型泛化能力更強。利用麻省理工心律失常公開數據集對所提方法進行了驗證,分類準確率達到了99.02%,實驗結果也表明基于融合特征的分類準確率高于基于單獨特征的分類準確率。

     

  • 圖  1  ELM的基本結構

    Figure  1.  Basic structure of an extreme learning machine (ELM)

    圖  2  心跳分類算法總體結構

    Figure  2.  Overall structure of the heartbeat classification algorithm

    圖  3  本文提出的1D CNN結構

    Figure  3.  Structure of the proposed 1D convolutional neural network

    圖  4  ELM心跳分類結構

    Figure  4.  ELM heartbeat classification structure

    表  1  MIT?BIH數據集的詳細描述和劃分

    Table  1.   Detailed description and division of the MIT?BIH dataset

    Heartbeat type (abbreviation)AnnotationTotal
    number of
    samples
    Number of training samplesNumber of testing samples
    Normal beat (NOR)N75023975365270
    Left bundle branch block (LBBB)L807232294843
    Right bundle branch block (RBBB)R725529024353
    Atrial premature contraction (APC)A254610181528
    Premature ventricular contraction (PVC)V712928524277
    Paced beat (PACE)/702628104216
    Aberrated atrial premature beat (AP)a1507575
    Ventricular flutter
    wave (VF)
    !472236236
    Fusion of ventricular and normal beat (VFN)F802401401
    Blocked atrial premature beat (BAP)x1939697
    Nodal (junctional) escape beat (NE)j229114115
    Fusion of paced and normal beat (FPN)f982491491
    Ventricular escape
    beat (VE)
    E1065353
    Nodal (junctional) premature beat (NP)J834241
    Atrial escape beat (AE)e1688
    Unclassifiable beat (UN)Q331617
    Total161101172409686021
    下載: 導出CSV

    表  2  每類心跳的召回率和精確率

    Table  2.   Recall and precision for each heartbeat class

    Heartbeat typeNumber of test samplesRecall/%Precision/%
    N6527099.5899.43
    L484399.7199.67
    R435399.6199.34
    A152886.4594.90
    V427797.8095.57
    /421699.6999.41
    a7565.3392.45
    !23693.6492.47
    F40179.5587.40
    x9786.6094.38
    j11587.8371.13
    f49191.6596.98
    E5394.3498.04
    J4190.2497.37
    e812.50100.00
    Q175.8850.00
    Total8602199.0299.02
    下載: 導出CSV

    表  3  混淆矩陣

    Table  3.   Confusion matrix

    Predict labels
    NLRAV/a!FxjfEJeQ
    True labelsN6499693581261082843240001
    L6482900700000001000
    R8043366201000000000
    A1691201321900100610000
    V624124183015180010000
    /5000142030000160000
    a112047049200000000
    !800050122101000000
    F54010270003190000000
    x40014012084100000
    j1201000000010100100
    f16000124000004500000
    E10002000000050000
    J10200000001003700
    e7000000000000010
    Q10010300000020001
    下載: 導出CSV

    表  4  提出的方法與其他方法的比較結果

    Table  4.   Comparison results of the proposed approach with other approaches

    ReferenceFeatures + ClassifierAccuracy/
    %
    Manual features onlyDWT, RR + ELM (Single)98.28
    Deep feature only1D CNN98.50
    Feature fusion
    (Without ensemble)
    DWT, RR, 1D Convolution +
    ELM (Single)
    98.81
    Ye[9]ICA, Wavelet, RR + SVM
    (One-against-one)
    98.72
    Our proposed approachDWT, RR, 1D Convolution + ELM
    (Bagging ensemble)
    99.02
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Thaler M S. The Only EKG Book You’ll Ever Need. 9th Ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2017[2] Gawlowska J, Wranicz J K, Norman J. “Jeff ” Holter (1914—1983). Cardiol J, 2009, 16(4): 386
    [2] Chazal P d, Reilly R B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2006, 53(12): 2535 doi: 10.1109/TBME.2006.883802
    [3] Mondéjar-Guerra V, Novo J, Rouco J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed Signal Process Control, 2019, 47: 41 doi: 10.1016/j.bspc.2018.08.007
    [4] Chazal P d, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2004, 51(7): 1196 doi: 10.1109/TBME.2004.827359
    [5] Tuncer T, Dogan S, P?awiak P, et al. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl Based Syst, 2019, 186: 104923 doi: 10.1016/j.knosys.2019.104923
    [6] Sahoo S, Kanungo B, Behera S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement, 2017, 108: 55 doi: 10.1016/j.measurement.2017.05.022
    [7] Afkhami R G, Azarnia G, Tinati M A. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognit Lett, 2016, 70: 45 doi: 10.1016/j.patrec.2015.11.018
    [8] Marinho L B, Nascimento N M M, Souza J W M, et al. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Gener Comput Syst, 2019, 97: 564 doi: 10.1016/j.future.2019.03.025
    [9] Ye C, Vijaya Kumar B V K, Coimbra M T. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng, 2012, 59(10): 2930 doi: 10.1109/TBME.2012.2213253
    [10] Castillo O, Melin P, Ramírez E, et al. Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst Appl, 2012, 39(3): 2947 doi: 10.1016/j.eswa.2011.08.156
    [11] Girshick R. Fast R?CNN // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1440
    [12] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2261
    [13] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
    [14] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 1
    [15] Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 815
    [16] Ding C X, Tao D C. Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 1002 doi: 10.1109/TPAMI.2017.2700390
    [17] He R, Wu X, Sun Z N, et al. Wasserstein CNN: Learning invariant features for NIR-VIS face recognition. IEEE Trans Pattern Anal Mach Intell, 2019, 41(7): 1761 doi: 10.1109/TPAMI.2018.2842770
    [18] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640 doi: 10.1109/TPAMI.2016.2572683
    [19] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278 doi: 10.1109/5.726791
    [20] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
    [21] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw, 2006, 17(4): 879 doi: 10.1109/TNN.2006.875977
    [22] Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging, 2016, 35(5): 1207 doi: 10.1109/TMI.2016.2535865
    [23] Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229

    李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
    [24] Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell, 2013, 35(1): 221 doi: 10.1109/TPAMI.2012.59
    [25] Bartlett P L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans Inf Theory, 1998, 44(2): 525 doi: 10.1109/18.661502
    [26] PhysioNet. MIT−BIH Arrhythmias Database [J/OL]. PhysioNet Online (2020-04-15) [2021-01-12] https://physionet.org/files/mitdb/1.0.0
    [27] Moody G B, Mark R G. The impact of the mit-bih arrhythmia database. IEEE Eng Med Biol Mag, 2001, 20(3): 45 doi: 10.1109/51.932724
  • 加載中
圖(4) / 表(4)
計量
  • 文章訪問數:  946
  • HTML全文瀏覽量:  523
  • PDF下載量:  104
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-12
  • 網絡出版日期:  2021-03-10
  • 刊出日期:  2021-09-18

目錄

    /

    返回文章
    返回