<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

中國頁巖氣開發理論與技術研究進展

朱維耀 陳震 宋智勇 吳建發 李武廣 岳明

朱維耀, 陳震, 宋智勇, 吳建發, 李武廣, 岳明. 中國頁巖氣開發理論與技術研究進展[J]. 工程科學學報, 2021, 43(10): 1397-1412. doi: 10.13374/j.issn2095-9389.2020.11.10.003
引用本文: 朱維耀, 陳震, 宋智勇, 吳建發, 李武廣, 岳明. 中國頁巖氣開發理論與技術研究進展[J]. 工程科學學報, 2021, 43(10): 1397-1412. doi: 10.13374/j.issn2095-9389.2020.11.10.003
ZHU Wei-yao, CHEN Zhen, SONG Zhi-yong, WU Jian-fa, LI Wu-guang, YUE Ming. Research progress in theories and technologies of shale gas development in China[J]. Chinese Journal of Engineering, 2021, 43(10): 1397-1412. doi: 10.13374/j.issn2095-9389.2020.11.10.003
Citation: ZHU Wei-yao, CHEN Zhen, SONG Zhi-yong, WU Jian-fa, LI Wu-guang, YUE Ming. Research progress in theories and technologies of shale gas development in China[J]. Chinese Journal of Engineering, 2021, 43(10): 1397-1412. doi: 10.13374/j.issn2095-9389.2020.11.10.003

中國頁巖氣開發理論與技術研究進展

doi: 10.13374/j.issn2095-9389.2020.11.10.003
基金項目: 國家重點基礎研究發展計劃(973計劃)資助項目(2013CB228002);國家自然科學基金資助項目(51974013)
詳細信息
    通訊作者:

    E-mail: weiyaook@sina.com

  • 中圖分類號: TE122.3

Research progress in theories and technologies of shale gas development in China

More Information
  • 摘要: 中國的頁巖氣田屬于非常規氣藏,采用體積壓裂工程技術才可以實現有效開采。不過,頁巖儲層與一般儲層的性質不同,納米級孔隙大量分布,其孔隙和滲透率十分微小,同時還分布有微裂縫,氣體在其中的流動具有解吸、擴散、滑脫和滲流等多種微觀機理,并且呈現出基質?微裂縫?人工裂縫的跨尺度多流態流動。常規的油氣開發理論與技術并不適用于頁巖氣藏,因此需要有針對性的研究,并建立頁巖氣開發的理論與技術,才能實現我國頁巖氣藏的高效地開發。從頁巖氣流動的基本規律出發,總結了頁巖氣流動的多流態?多尺度?多場耦合輸運機理和滲流規律,歸納了考慮解吸?擴散?滑移?滲流的多尺度非線性滲流統一方程,給出了多尺度全流態圖版。通過頁巖氣多級壓裂水平井多區耦合非線性滲流理論、多場耦合非線性滲流理論,形成頁巖氣藏流場區域儲量動用與開發動態變化規律,針對我國頁巖氣特點構建了頁巖氣產量遞減模型。基于上述理論提出了開發設計方法,提出了我國儲層分級評價及優選目標評價方法,并且建立了適合我國儲層的分級評價及優選目標方法與指標,對中國頁巖氣壓裂開發工藝適應性技術進展進行了歸納總結。在此基礎上,對未來頁巖氣高效開發理論的發展方向進行了展望,以期對我國頁巖氣理論和技術研究提供指導。

     

  • 圖  1  最大過剩吸附量和臨界解吸壓力[17]

    Figure  1.  Maximum excess adsorption capacity and critical desorption pressure[17]

    圖  2  在同一溫度下的吸附?解吸曲線[16]

    Figure  2.  Adsorption?desorption curve at the same temperature[16]

    圖  3  擴散系數與溫度的變化關系[24]

    Figure  3.  Relationship between diffusion coefficient and temperature[24]

    圖  4  擴散系數與有效應力的變化關系[24]

    Figure  4.  Relationship between diffusion coefficient and effective stress[24]

    圖  5  基質頁巖納米孔隙[27]

    Figure  5.  Nanopores in shale matrix[27]

    圖  6  基質巖心滲流規律曲線[10]

    Figure  6.  Porous flow curves of matrix cores[10]

    圖  7  納米多孔氧化鋁膜。(a)12.6 nm孔徑;(b)89.2 nm孔徑[28]

    Figure  7.  Nanoporous alumina membrane: (a) pore diameter of 12.6 nm; (b) pore diameter of 89.2 nm[28]

    圖  8  實驗流量與泊肅葉理論流量的比較。(a)5.03 μm孔徑;(b)89.2 nm孔徑[28]

    Figure  8.  Comparison of experimental flow and poiseuille’s theoretical calculation: (a) pore diameter of 5.03 μm; (b) pore diameter of 89.2 nm[28]

    圖  9  微裂縫中氣體流動實驗測量[32]

    Figure  9.  Experimental measurement of gas flow in microcracks[32]

    圖  10  頁巖氣流動多流態圖版[10]

    Figure  10.  Multimode flow pattern of shale gas[10]

    圖  11  納微米孔隙及微裂縫中的流動規律比較[42]

    Figure  11.  Comparison of flow laws in nano/micropores and microcracks[42]

    圖  12  頁巖氣藏開發分區耦合示意圖[10]

    Figure  12.  Schematic of sector coupling during shale gas reservoir development[10]

    圖  13  不同縫網區域大小的影響[52]

    Figure  13.  Influence of different fracture network sector sizes[52]

    圖  14  縫網區裂縫滲透率的影響[52]

    Figure  14.  Influence of fracture permeability of the fracture network sector[52]

    圖  15  不同滲透率下未壓裂井動邊界曲線[55]

    Figure  15.  Moving boundary curves of wells at different permeabilities without any fracture[55]

    圖  16  不同滲透率下單一裂縫井動邊界曲線[55]

    Figure  16.  Moving boundary curves of wells at different permeabilities with a single fracture[55]

    圖  17  不同縫網區域大小對產量的影響[42]

    Figure  17.  Influence of different fracture network sector sizes on production[42]

    圖  18  裂縫段數的影響[42]

    Figure  18.  Influence of the number of fracture stages[42]

    圖  19  采氣井的生產數據擬合曲線[52]

    Figure  19.  Production history matching curve of the gas recovery well[52]

    圖  20  采用階梯降壓開發效果對比圖

    Figure  20.  Comparison of the effect of using the step-gradient reducing pressure development method

    表  1  頁巖儲層分級評價標準[62]

    Table  1.   Classification and evaluation criteria for shale reservoirs[62]

    Shale reservoir classificationTOC/
    %
    Effective porosity/%Brittleness indexTotal gas content / (m3·t?1)
    Class Ⅰ≥3≥5≥55≥3
    Class Ⅱ2?33?545?552?3
    Class Ⅲ1?22?330?451?2
    下載: 導出CSV

    表  2  頁巖氣開發有利目標優選指標與標準[65]

    Table  2.   Preferred indicators and standards for favorable targets for shale gas development[65]

    Reservoir depth /mReservoir thickness of Class I+II/mPressure coefficientDistance to erosion line /kmDistance to fault /mGround conditions
    <3500>20>1.2(gas content >3 m3·t?1, vertical well test production >10000 m3·d?1)>7–8>700Fulfill the requirement of wells deployment
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tian G. China's shale gas reserves exceeded 1 trillion cubic meters. Nat Gas Ind, 2018, 38(7): 119

    天工. 我國頁巖氣儲量突破1萬億立方米. 天然氣工業, 2018, 38(7):119
    [2] Zou C N, Dong D Z, Wang S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Explor Dev, 2010, 37(6): 641 doi: 10.1016/S1876-3804(11)60001-3

    鄒才能, 董大忠, 王社教, 等. 中國頁巖氣形成機理、地質特征及資源潛力. 石油勘探與開發, 2010, 37(6):641 doi: 10.1016/S1876-3804(11)60001-3
    [3] Yao J, Sun H, Huang Z Q, et al. Key mechanical problems in the developmentof shale gas reservoirs. Sci Sinica Phys Mech Astron, 2013, 43(12): 1527 doi: 10.1360/132013-97

    姚軍, 孫海, 黃朝琴, 等. 頁巖氣藏開發中的關鍵力學問題. 中國科學:物理學 力學 天文學, 2013, 43(12):1527 doi: 10.1360/132013-97
    [4] Yu R Z, Zhang X W, Bian Y N, et al. Flow mechanism of shale gas reservoirs and influential factors of their productivity. Nat Gas Ind, 2012, 32(9): 10 doi: 10.3787/j.issn.1000-0976.2012.09.003

    于榮澤, 張曉偉, 卞亞南, 等. 頁巖氣藏流動機理與產能影響因素分析. 天然氣工業, 2012, 32(9):10 doi: 10.3787/j.issn.1000-0976.2012.09.003
    [5] Wei M Q, Duan Y G, Fang Q T, et al. Current research situation of porosity & permeability characteristics and seepage mechanism of shale gas reservoir. Reserv Eval Dev, 2011, 1(4): 73 doi: 10.3969/j.issn.2095-1426.2011.04.015

    魏明強, 段永剛, 方全堂, 等. 頁巖氣藏孔滲結構特征和滲流機理研究現狀. 油氣藏評價與開發, 2011, 1(4):73 doi: 10.3969/j.issn.2095-1426.2011.04.015
    [6] Nie H K, Zhang J C. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin. Petroleum Geol Exp, 2011, 33(3): 219 doi: 10.3969/j.issn.1001-6112.2011.03.001

    聶海寬, 張金川. 頁巖氣儲層類型和特征研究——以四川盆地及其周緣下古生界為例. 石油實驗地質, 2011, 33(3):219 doi: 10.3969/j.issn.1001-6112.2011.03.001
    [7] Wang X, Liu Y H, Zhang M, et al. Conditions of formation and accumulation for shale gas. Nat Gas Geosci, 2010, 21(2): 350

    王祥, 劉玉華, 張敏, 等. 頁巖氣形成條件及成藏影響因素研究. 天然氣地球科學, 2010, 21(2):350
    [8] Zhang X F, Lu X C, Zhang L Y, et al. Occurrences of shale gas and their petroleum geological significance. Adv Earth Sci, 2010, 25(6): 597

    張雪芬, 陸現彩, 張林曄, 等. 頁巖氣的賦存形式研究及其石油地質意義. 地球科學進展, 2010, 25(6):597
    [9] Zhang T W, Ellis G S, Ruppel S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem, 2012, 47: 120 doi: 10.1016/j.orggeochem.2012.03.012
    [10] Zhu W Y, Song F Q, Shang X C, et al. Nonlinear Porous Flow Theory and Method of Shale Gas Reservoirs Efficiently Development. Beijing: Science Press, 2018

    朱維耀, 宋付權, 尚新春, 等. 頁巖氣藏有效開發非線性滲流理論及方法. 北京: 科學出版社, 2018
    [11] Guo W, Xiong W, Gao S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Explor Dev, 2013, 40(4): 481 doi: 10.11698/PED.2013.04.14

    郭為, 熊偉, 高樹生, 等. 溫度對頁巖等溫吸附/解吸特征影響. 石油勘探與開發, 2013, 40(4):481 doi: 10.11698/PED.2013.04.14
    [12] Zhang Z Y, Yang S B. On the adsorption and desorption trend of shale gas. J Exp Mech, 2012, 27(4): 492

    張志英, 楊盛波. 頁巖氣吸附解吸規律研究. 實驗力學, 2012, 27(4):492
    [13] Yu W, Sepehrnoori K, Patzek T W. Evaluation of gas adsorption in Marcellus shaleAll Days // SPE Annual Technical Conference and Exhibition. Amsterdam, 2014: 27
    [14] Merkel A, Fink R, Littke R. High pressure methane sorption characteristics of lacustrine shales from the Midland Valley Basin, Scotland. Fuel, 2016, 182: 361 doi: 10.1016/j.fuel.2016.05.118
    [15] Rexer T F T, Benham M J, Aplin A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels, 2013, 27(6): 3099 doi: 10.1021/ef400381v
    [16] Guan F J, Zhang J, Wang H T, et al. Experimental study on desorption hysteresis of longmaxi formation shale in eastern Sichuan. J Xian Shiyou Univ Nat Sci, 2017, 32(1): 71

    關富佳, 張杰, 王海濤, 等. 川東龍馬溪組頁巖解吸滯后現象實驗研究. 西安石油大學學報(自然科學版), 2017, 32(1):71
    [17] Duan X G, Hu Z M, Gao S S, et al. Shale high pressure isothermal adsorption curve and the production dynamic experiments of gas well. Petroleum Explor Dev, 2018, 45(1): 119

    端祥剛, 胡志明, 高樹生, 等. 頁巖高壓等溫吸附曲線及氣井生產動態特征實驗. 石油勘探與開發, 2018, 45(1):119
    [18] Zhou S W, Wang H Y, Xue H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method. Nat Gas Ind, 2016, 36(11): 12 doi: 10.3787/j.issn.1000-0976.2016.11.002

    周尚文, 王紅巖, 薛華慶, 等. 頁巖過剩吸附量與絕對吸附量的差異及頁巖氣儲量計算新方法. 天然氣工業, 2016, 36(11):12 doi: 10.3787/j.issn.1000-0976.2016.11.002
    [19] Chen H, Guan F J, Zhang J, et al. New method for calculating shale gas adsorption amount at high pressure. Petroleum Geol Recovery Effic, 2019, 26(2): 87

    陳花, 關富佳, 張杰, 等. 高壓下頁巖氣吸附量計算新方法. 油氣地質與采收率, 2019, 26(2):87
    [20] Gao S S, Yu X H, Liu H X. Impact of slippage effect on shale gas well productivity. Nat Gas Ind, 2011, 31(4): 55 doi: 10.3787/j.issn.1000-0976.2011.04.013

    高樹生, 于興河, 劉華勛. 滑脫效應對頁巖氣井產能影響的分析. 天然氣工業, 2011, 31(4):55 doi: 10.3787/j.issn.1000-0976.2011.04.013
    [21] Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments. J Can Petroleum Technol, 2007, 46(10): 55
    [22] Zhu W Y, Tian W, Gao Y, et al. Study on experiment conditions of seepage law of marine shale gas. Nat Gas Geosci, 2015, 26(6): 1106

    朱維耀, 田巍, 高英, 等. 頁巖氣滲流規律測試條件研究. 天然氣地球科學, 2015, 26(6):1106
    [23] Yao J, Sun H, Fan D Y, et al. Transport mechanisms and numerical simulation of shale gas reservoirs. J China Univ Petroleum Ed Nat Sci, 2013, 37(1): 91

    姚軍, 孫海, 樊冬艷, 等. 頁巖氣藏運移機制及數值模擬. 中國石油大學學報(自然科學版), 2013, 37(1):91
    [24] Guo X, Zhu Z, Gu S M, et al. Research on sensitivity of temperature and effective stress on shale diffusion. Special Oil &Gas Reservoirs, 2015, 22(2): 74 doi: 10.3969/j.issn.1006-6535.2015.02.018

    郭肖, 朱爭, 辜思曼, 等. 溫度與有效應力對頁巖擴散的敏感性研究. 特種油氣藏, 2015, 22(2):74 doi: 10.3969/j.issn.1006-6535.2015.02.018
    [25] Wu K L, Chen Z X. Review of gas transport in nanopores in shale gas reservoirs. Petroleum Sci Bull, 2016, 1(1): 91

    吳克柳, 陳掌星. 頁巖氣納米孔氣體傳輸綜述. 石油科學通報, 2016, 1(1):91
    [26] Curtis J B. Fractured shale-gas systems. Bulletin, 2002, 86(11): 1921
    [27] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. Bulletin, 2012, 96(6): 1099 doi: 10.1306/10171111052
    [28] Song F Q, Hu X, Zhu G M, et al. The characteristics of water flow displaced by gas in nano arrays. Chin J Theor Appl Mech, 2018, 50(3): 553 doi: 10.6052/0459-1879-17-343

    宋付權, 胡簫, 朱根民, 等. 納米陣列中氣體驅替液體的流動特征. 力學學報, 2018, 50(3):553 doi: 10.6052/0459-1879-17-343
    [29] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. Bulletin, 2011, 95(12): 2017 doi: 10.1306/03301110145
    [30] Ding W L, Li C, Li C Y, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation. Earth Sci Front, 2012, 19(2): 212

    丁文龍, 李超, 李春燕, 等. 頁巖裂縫發育主控因素及其對含氣性的影響. 地學前緣, 2012, 19(2):212
    [31] Wang Y M, Dong D Z, Li J Z, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan. Acta Petrolei Sinica, 2012, 33(4): 551 doi: 10.7623/syxb201204003

    王玉滿, 董大忠, 李建忠, 等. 川南下志留統龍馬溪組頁巖氣儲層特征. 石油學報, 2012, 33(4):551 doi: 10.7623/syxb201204003
    [32] Ma D X, Zhu W Y, Zhang L Y. Microstructure and gas porous flow characteristics of shale reservoirs // Proceedings of the 20th Annual Conference of Beijing Mechanics Society. Beijing, 2014: 17

    馬東旭, 朱維耀, 張燎原. 頁巖儲層微觀結構及氣體滲流特征 // 北京力學會第20屆學術年會論文集. 北京, 2014: 17
    [33] Civan F. A review of approaches for describing gas transfer through extremely tight porous media. AIP Conf Proc, 2010, 1254(1): 53
    [34] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J Can Petroleum Technol, 2009, 48(8): 16 doi: 10.2118/09-08-16-DA
    [35] Wu K L, Chen Z X, Li X F. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs. Chem Eng J, 2015, 281: 813 doi: 10.1016/j.cej.2015.07.012
    [36] Wu K L, Chen Z X, Li X F, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling. Int J Heat Mass Transf, 2016, 93: 408 doi: 10.1016/j.ijheatmasstransfer.2015.10.003
    [37] Ertekin T, King G A, Schwerer F C. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations. SPE Form Eval, 1986, 1(1): 43 doi: 10.2118/12045-PA
    [38] Ali Beskok G E K. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1): 43 doi: 10.1080/108939599199864
    [39] Civan F, Rai C S, Sondergeld C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transp Porous Media, 2011, 86(3): 925 doi: 10.1007/s11242-010-9665-x
    [40] Civan F, Rai C S S, Sondergeld C H H. Determining shale permeability to gas by simultaneous analysis of various pressure tests. SPE J, 2012, 17(3): 717 doi: 10.2118/144253-PA
    [41] Civan F, Devegowda D, Sigal R. Critical evaluation and improvement of methods for determination of matrix permeability of shale // SPE Annual Technical Conference and Exhibition. New Orleans, 2013: 166473
    [42] Deng J, Zhu W Y, Ma Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel, 2014, 124: 232 doi: 10.1016/j.fuel.2014.02.001
    [43] Yao J, Sun H, Fan D Y, et al. Numerical simulation of gas transport mechanisms in tight shale gas reservoirs. Petroleum Sci, 2013, 10(4): 528 doi: 10.1007/s12182-013-0304-3
    [44] Wu K L, Li X F, Wang C C, et al. A model for gas transport in microfractures of shale and tight gas reservoirs. Aiche J, 2015, 61(6): 2079 doi: 10.1002/aic.14791
    [45] Wu K L, Li X F, Chen Z X. A model for gas transport through nanopores of shale gas reservoirs. Acta Petrolei Sinica, 2015, 36(7): 837 doi: 10.7623/syxb201507008

    吳克柳, 李相方, 陳掌星. 頁巖氣納米孔氣體傳輸模型. 石油學報, 2015, 36(7):837 doi: 10.7623/syxb201507008
    [46] Wu K L, Li X F, Chen Z X. Real gas transport through nanopores of shale gas reservoirs. Sci Sinica Technol, 2016, 46(1): 68 doi: 10.1360/N092015-00076

    吳克柳, 李相方, CHEN ZhangXin. 頁巖氣納米孔真實氣體傳輸模型. 中國科學:技術科學, 2016, 46(1):68 doi: 10.1360/N092015-00076
    [47] Wu K L, Chen Z X, Li X F, et al. Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect. Fuel, 2017, 205: 173 doi: 10.1016/j.fuel.2017.05.055
    [48] Song H Q, Yu M X, Zhu W Y, et al. Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media. Int J Heat Mass Transf, 2015, 80: 626 doi: 10.1016/j.ijheatmasstransfer.2014.09.039
    [49] Zhu W Y, Deng J, Yang B H, et al. Seepage modelof shale gas reservoir and productivity analysis of fractured vertical wells. Mech Eng, 2014, 36(2): 156 doi: 10.6052/1000-0879-13-357

    朱維耀, 鄧佳, 楊寶華, 等. 頁巖氣致密儲層滲流模型及壓裂直井產能分析. 力學與實踐, 2014, 36(2):156 doi: 10.6052/1000-0879-13-357
    [50] Yang J, Kang Y L, Sang Y, et al. Research on diffusibility of the gas in tight sand gas reservoir. J Southwest Petroleum Univ Sci Technol, 2009, 31(6): 76

    楊建, 康毅力, 桑宇, 等. 致密砂巖天然氣擴散能力研究. 西南石油大學學報(自然科學版), 2009, 31(6):76
    [51] Yu B M. Advances of fractal analysis of transport properties for porous media. Adv Mech, 2003, 33(3): 333 doi: 10.3321/j.issn:1000-0992.2003.03.005

    郁伯銘. 多孔介質輸運性質的分形分析研究進展. 力學進展, 2003, 33(3):333 doi: 10.3321/j.issn:1000-0992.2003.03.005
    [52] Deng J. Nonlinear Seepage Theory of Multistage Fractured Horizontal Wells for Shale Gas Reservoirs [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    鄧佳. 頁巖氣儲層多級壓裂水平井非線性滲流理論研究[學位論文]. 北京: 北京科技大學, 2015
    [53] Zhu W Y, Zhang Q T, Yue M, et al. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics. Chin J Eng, 2020, 42(10): 1318

    朱維耀, 張啟濤, 岳明, 等. 裂縫網絡支撐劑非均勻分布對開采動態規律的影響. 工程科學學報, 2020, 42(10):1318
    [54] Zhu W Y, Qi Q, Ma Q, et al. Unstable seepage modeling and pressure propagation of shale gas reservoirs. Petroleum Explor Dev, 2016, 43(2): 261 doi: 10.1016/S1876-3804(16)30029-5

    朱維耀, 亓倩, 馬千, 等. 頁巖氣不穩定滲流壓力傳播規律和數學模型. 石油勘探與開發, 2016, 43(2):261 doi: 10.1016/S1876-3804(16)30029-5
    [55] Qi Q, Zhu W Y. Moving boundary analysis of fractured shale gas reservoir. Chin J Eng, 2019, 41(11): 1387

    亓倩, 朱維耀. 復雜壓裂縫網頁巖氣儲層壓力傳播動邊界研究. 工程科學學報, 2019, 41(11):1387
    [56] Li W G, Zhong B, Fan H C, et al. Shale Gas Yield Decline Analysis Method: China Patent, 201410852718.3. 2016-07-27

    李武廣, 鐘兵, 樊懷才, 等. 一種頁巖氣產量遞減分析方法: 中國專利, 201410852718.3. 2016-07-27
    [57] Li X J, Hu S Y, Cheng K M. Suggestions from the development of fractured shale gas in North America. Petroleum Explor Dev, 2007, 34(4): 392 doi: 10.3321/j.issn:1000-0747.2007.04.002

    李新景, 胡素云, 程克明. 北美裂縫性頁巖氣勘探開發的啟示. 石油勘探與開發, 2007, 34(4):392 doi: 10.3321/j.issn:1000-0747.2007.04.002
    [58] Zhang J C, Nie H K, Xu B, et al. Geological condition of shale gas accumulation in Sichuan basin. Nat Gas Ind, 2008, 28(2): 151 doi: 10.3787/j.issn.1000-0976.2008.02.045

    張金川, 聶海寬, 徐波, 等. 四川盆地頁巖氣成藏地質條件. 天然氣工業, 2008, 28(2):151 doi: 10.3787/j.issn.1000-0976.2008.02.045
    [59] Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrol Sinica, 2011, 27(6): 1857

    鄒才能, 朱如凱, 白斌, 等. 中國油氣儲層中納米孔首次發現及其科學價值. 巖石學報, 2011, 27(6):1857
    [60] Zhao S X, Yang Y M, Zhang J, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China. Nat Gas Geosci, 2016, 27(3): 470 doi: 10.11764/j.issn.1672-1926.2016.03.0470

    趙圣賢, 楊躍明, 張鑒, 等. 四川盆地下志留統龍馬溪組頁巖小層劃分與儲層精細對比. 天然氣地球科學, 2016, 27(3):470 doi: 10.11764/j.issn.1672-1926.2016.03.0470
    [61] Li W G, Yang S L, Chen F, et al. The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature. J Mineral Petrol, 2012, 32(2): 115 doi: 10.3969/j.issn.1001-6872.2012.02.015

    李武廣, 楊勝來, 陳峰, 等. 溫度對頁巖吸附解吸的敏感性研究. 礦物巖石, 2012, 32(2):115 doi: 10.3969/j.issn.1001-6872.2012.02.015
    [62] Li W G, Wu J F, Song W H, et al. Study on quantitative evaluation method of shale nanopore classification. Nat Gas Oil, 2017, 35(2): 74 doi: 10.3969/j.issn.1006-5539.2017.02.015

    李武廣, 吳建發, 宋文豪, 等. 頁巖納米孔隙分級量化評價方法研究. 天然氣與石油, 2017, 35(2):74 doi: 10.3969/j.issn.1006-5539.2017.02.015
    [63] Li Y J, Feng Y Y, Liu H, et al. Geological characteristics and resource potential of lacustrine shale gas in the Sichuan Basin, SW China. Petroleum Explor Dev, 2013, 40(4): 423 doi: 10.11698/PED.2013.04.05

    李延鈞, 馮媛媛, 劉歡, 等. 四川盆地湖相頁巖氣地質特征與資源潛力. 石油勘探與開發, 2013, 40(4):423 doi: 10.11698/PED.2013.04.05
    [64] Liu W P, Zhang C L, Gao G D, et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 2017, 38(2): 175 doi: 10.7623/syxb201702005

    劉文平, 張成林, 高貴冬, 等. 四川盆地龍馬溪組頁巖孔隙度控制因素及演化規律. 石油學報, 2017, 38(2):175 doi: 10.7623/syxb201702005
    [65] Xie J, Zhao S X, Shi X W, et al. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin. Nat Gas Ind, 2017, 37(7): 1 doi: 10.3787/j.issn.1000-0976.2017.07.001

    謝軍, 趙圣賢, 石學文, 等. 四川盆地頁巖氣水平井高產的地質主控因素. 天然氣工業, 2017, 37(7):1 doi: 10.3787/j.issn.1000-0976.2017.07.001
    [66] Zou X B. New progress in shale gas drilling technology. Chem Enterp Manag, 2019(19): 84 doi: 10.3969/j.issn.1008-4800.2019.19.059

    鄒憲斌. 頁巖氣鉆井技術新進展. 化工管理, 2019(19):84 doi: 10.3969/j.issn.1008-4800.2019.19.059
    [67] Chen G S, Wu J F, Liu Y, et al. Geology-engineeing integration key technologies for ten billion cubic meters of shale gas productivity construction in the Southern Sichuan Basin. Nat Gas Ind, 2021, 41(1): 72

    陳更生, 吳建發, 劉勇, 等. 川南地區百億立方米頁巖氣產能建設地質工程一體化關鍵技術. 天然氣工業, 2021, 41(1):72
    [68] Fan H F, Zang Y B, Zhang J C, et al. Technical difficulties and countermeasures of deep shale gas drilling. Drill Prod Technol, 2019, 42(3): 20 doi: 10.3969/J.ISSN.1006-768X.2019.03.06

    樊好福, 臧艷彬, 張金成, 等. 深層頁巖氣鉆井技術難點與對策. 鉆采工藝, 2019, 42(3):20 doi: 10.3969/J.ISSN.1006-768X.2019.03.06
    [69] Zhang X F, Duan Y X, Zhao X M. Drilling technology for shale gas wells in southern Sichuan. Petrochem Ind Technol, 2019, 26(5): 143 doi: 10.3969/j.issn.1006-0235.2019.05.088

    張小鋒, 段元向, 趙小猛. 川南頁巖氣井鉆井工藝配套技術. 石化技術, 2019, 26(5):143 doi: 10.3969/j.issn.1006-0235.2019.05.088
    [70] China Petroleum Association. The unique technology of Chuanqing drilling shortens the shale gas drilling cycle by 50%. China Petroleum News, 2018-10-11(8)

    中國石油協會. 川慶鉆探特色技術縮短頁巖氣鉆井周期50%. 中國石油報, 2018-10-11(8)
    [71] Zang Y B. Key drilling technology for deep shale gas reservoirs in the southeastern Sichuan region. Petroleum Drill Tech, 2018, 46(3): 7

    臧艷彬. 川東南地區深層頁巖氣鉆井關鍵技術. 石油鉆探技術, 2018, 46(3):7
    [72] Ma X H, Xie J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China. Petroleum Explor Dev, 2018, 45(1): 161

    馬新華, 謝軍. 川南地區頁巖氣勘探開發進展及發展前景. 石油勘探與開發, 2018, 45(1):161
    [73] Zhao H, Si X Q, Wang A F. Water-based drilling fluid and its application to China shale gas reservoirs. Nat Gas Explor Dev, 2018, 41(1): 90

    趙虎, 司西強, 王愛芳. 國內頁巖氣水基鉆井液研究與應用進展. 天然氣勘探與開發, 2018, 41(1):90
    [74] Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ). Petroleum Explor Dev, 2016, 43(2): 166 doi: 10.11698/PED.2016.02.02

    鄒才能, 董大忠, 王玉滿, 等. 中國頁巖氣特征、挑戰及前景(二). 石油勘探與開發, 2016, 43(2):166 doi: 10.11698/PED.2016.02.02
    [75] Yang B Z, Wang L, Chen L, et al. Rapid drilling technology for super long horizontal wells in Zhaotong shale gas block. China Petroleum Chem Stand Qual, 2019, 39(3): 245

    楊博仲, 王力, 陳磊, 等. 昭通頁巖氣區塊超長水平井快速鉆井技術. 中國石油和化工標準與質量, 2019, 39(3):245
    [76] Zeng Y. The deepest shale gas well of PetroChina drilled by southwest oil & gas field. Nat Gas Oil, 2019, 37(3): 82

    曾妍. 西南油氣田鉆成中國石油最深頁巖氣井. 天然氣與石油, 2019, 37(3):82
    [77] Wu Q, Liang X, Xian C G, et al. Geoscience-to-production integration ensures effective and efficient South China marine shale gas development. China Petroleum Explor, 2015, 20(4): 1 doi: 10.3969/j.issn.1672-7703.2015.04.001

    吳奇, 梁興, 鮮成鋼, 等. 地質—工程一體化高效開發中國南方海相頁巖氣. 中國石油勘探, 2015, 20(4):1 doi: 10.3969/j.issn.1672-7703.2015.04.001
    [78] Han L X, Sun H F. Study on factory-like drilling mode for shale gas in Changning. Drill Prod Technol, 2016, 39(6): 1 doi: 10.3969/J.ISSN.1006-768X.2016.06.01

    韓烈祥, 孫海芳. 長寧頁巖氣工廠化鉆井模式研究. 鉆采工藝, 2016, 39(6):1 doi: 10.3969/J.ISSN.1006-768X.2016.06.01
    [79] Zhao G Y. Deployment and optimization of “factory-like” horizontal well: A case study on Weiyuan shale gas reservoirs, Sichuan Basin. Nat Gas Explor Dev, 2018, 41(1): 51

    趙國英. 水平井“工廠化”部署與設計優化——以四川威遠頁巖氣藏為例. 天然氣勘探與開發, 2018, 41(1):51
    [80] Liang X, Wang G C, Zhang J H, et al. High-efficiency integrated shale gas development model of Zhaotong National Demonstration Zone and its practical enlightenment. China Petroleum Explor, 2017, 22(1): 29 doi: 10.3969/j.issn.1672-7703.2017.01.005

    梁興, 王高成, 張介輝, 等. 昭通國家級示范區頁巖氣一體化高效開發模式及實踐啟示. 中國石油勘探, 2017, 22(1):29 doi: 10.3969/j.issn.1672-7703.2017.01.005
    [81] Ma Y S, Cai X Y, Zhao P R. China’s shale gas exploration and development: Understanding and practice. Petroleum Explor Dev, 2018, 45(4): 561

    馬永生, 蔡勛育, 趙培榮. 中國頁巖氣勘探開發理論認識與實踐. 石油勘探與開發, 2018, 45(4):561
    [82] Zhao J Z, Ren L, Shen C, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs. Nat Gas Ind, 2018, 38(3): 1 doi: 10.3787/j.issn.1000-0976.2018.03.001

    趙金洲, 任嵐, 沈騁, 等. 頁巖氣儲層縫網壓裂理論與技術研究新進展. 天然氣工業, 2018, 38(3):1 doi: 10.3787/j.issn.1000-0976.2018.03.001
    [83] Rafiee M, Soliman M Y, Pirayesh E. Hydraulic fracturing design and optimization: a modification to zipper frac // SPE Annual Technical Conference and Exhibition. San Antonio, 2012: 159786
    [84] Guan B S, Liu Y T, Liang L, et al. Shale oil reservoir reconstruction and efficient development technology. Oil Drill Prod Technol, 2019, 41(2): 212

    管保山, 劉玉婷, 梁利, 等. 頁巖油儲層改造和高效開發技術. 石油鉆采工藝, 2019, 41(2):212
    [85] Zhang S H. Integrated management of shale gas operation based on well integrity technology and standard. Oil Drill Prod Technol, 2019, 41(2): 184

    張紹槐. 用井筒完整性技術與標準一體化管理頁巖氣作業. 石油鉆采工藝, 2019, 41(2):184
    [86] Zhang S H. Selected Papers on Petroleum Drilling and Completion. Beijing: Petroleum Industry Press, 2018

    張紹槐. 石油鉆井完井文集. 北京: 石油工業出版社, 2018
    [87] Yang G F, Zhou Q F, Li Y. Technological progress in Re-fracturing of US shale oil and gas wells for higher production factor. Oil Forum, 2016, 35(2): 46

    楊國豐, 周慶凡, 李穎. 美國頁巖油氣井重復壓裂提高采收率技術進展及啟示. 石油科技論壇, 2016, 35(2):46
    [88] Xie J. Practices and achievements of the Changning–Weiyuan shale gas national demonstration project construction. Nat Gas Ind, 2018, 38(2): 1

    謝軍. 長寧——威遠國家級頁巖氣示范區建設實踐與成效. 天然氣工業, 2018, 38(2):1
  • 加載中
圖(20) / 表(2)
計量
  • 文章訪問數:  1252
  • HTML全文瀏覽量:  434
  • PDF下載量:  157
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-10
  • 網絡出版日期:  2021-09-29
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回