<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

二氧化碳相變致裂技術研究進展與展望

周盛濤 羅學東 蔣楠 張宗賢 姚穎康

周盛濤, 羅學東, 蔣楠, 張宗賢, 姚穎康. 二氧化碳相變致裂技術研究進展與展望[J]. 工程科學學報, 2021, 43(7): 883-893. doi: 10.13374/j.issn2095-9389.2020.11.05.006
引用本文: 周盛濤, 羅學東, 蔣楠, 張宗賢, 姚穎康. 二氧化碳相變致裂技術研究進展與展望[J]. 工程科學學報, 2021, 43(7): 883-893. doi: 10.13374/j.issn2095-9389.2020.11.05.006
ZHOU Sheng-tao, LUO Xue-dong, JIANG Nan, ZHANG Zong-xian, YAO Ying-kang. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883-893. doi: 10.13374/j.issn2095-9389.2020.11.05.006
Citation: ZHOU Sheng-tao, LUO Xue-dong, JIANG Nan, ZHANG Zong-xian, YAO Ying-kang. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883-893. doi: 10.13374/j.issn2095-9389.2020.11.05.006

二氧化碳相變致裂技術研究進展與展望

doi: 10.13374/j.issn2095-9389.2020.11.05.006
基金項目: 國家自然科學基金資助項目(42072309);爆破工程湖北省重點實驗室開放基金資助項目(HKLBEF202002)
詳細信息
    通訊作者:

    E-mail:cugluoxd@foxmail.com

  • 中圖分類號: TU94+1

A review on fracturing technique with carbon dioxide phase transition

More Information
  • 摘要: 二氧化碳相變致裂作為一種環境友好的綠色破巖技術,具有破巖效率高、振動小、無污染等優點,近年來已成為巖石破碎與開挖領域的熱門研究課題,相關研究發展迅速。大量學者運用理論分析、實驗研究和數值模擬等手段對二氧化碳相變致裂技術進行了廣泛探究,并取得了一些有益進展。通過對現有相關研究成果的調研分析,闡述了二氧化碳相變致裂技術的破巖機理,回顧了二氧化碳相變致裂荷載特征及其測試手段,歸納了致裂荷載表征方法,概括了致裂荷載與致裂效果的主要影響因素,分析了二氧化碳相變致裂的有害效應,總結了二氧化碳相變致裂技術在多領域的應用,并探討了二氧化碳相變致裂當前存在的問題與未來挑戰,以期為二氧化碳相變致裂技術的理論研究和工程應用推廣提供參考。

     

  • 圖  1  二氧化碳相變致裂設備

    Figure  1.  Mechanical equipment of the carbon dioxide phase transition fracturing

    圖  2  二氧化碳相變致裂管結構圖

    Figure  2.  Structure of carbon dioxide phase transition fracturing pipe

    圖  3  貫通式錐型破碎

    Figure  3.  Penetrating cone fracture

    圖  4  鉆孔圍巖分區示意圖

    Figure  4.  Surrounding rock zones of the borehole

    圖  5  致裂孔內壓力測試曲線[25]

    Figure  5.  Pressure test curve in the fracturing hole[25]

    圖  6  致裂管內壓力測試曲線示意圖[26]

    Figure  6.  Pressure test curve in the fracturing pipe[26]

    圖  7  有效影響半徑隨致裂峰值壓力的變化情況[37]

    Figure  7.  Variation of effective influence radius with varying peak fracturing pressures[37]

    圖  8  不同峰值壓力下裂紋累計長度和主裂紋條數變化情況[15]

    Figure  8.  Variation in cumulative crack lengths and the number of main cracks with varying peak fracturing pressures[15]

    圖  9  三種不同的樁井開挖方案[12].(a)方案1;(b)方案2;(c)方案3

    Figure  9.  Three different pile well excavation schemes[12]: (a) scheme 1;(b) scheme 2;(c) scheme 3

    圖  10  典型CO2相變致裂振動速度時程曲線[25]

    Figure  10.  Velocity–time history curve of a typical carbon dioxide phase transition fracturing vibration[25]

    圖  11  九里山礦煤層增透試驗鉆孔布置圖[55]

    Figure  11.  Borehole layout of the coal permeability improvement experiment in Jiulishan Mine[55]

    表  1  不同破巖技術荷載參數對比[22-24]

    Table  1.   Load parameters of different rock-breaking technologies

    MethodsPeak pressure/
    MPa
    Pressure rise time/sLoading rate/
    (GPa?s?1)
    Total time/s
    Blasting~104~10?6103?106>10?6
    CO2 phase transition fracturing~102~10?310?102~10
    Hydraulic fracturing~10~10210?1?10?2~104
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xia B W, Gao Y G, Liu C W, et al. Experimental study on rock-breaking load in slot-hydraulic blasting. Chin J Eng, 2020, 42(9): 1130

    夏彬偉, 高玉剛, 劉承偉, 等. 縫槽水壓爆破破巖載荷實驗研究. 工程科學學報, 2020, 42(9):1130
    [2] Armaghani D J, Hajihassani M, Sohaei H, et al. Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arab J Geosci, 2015, 8(12): 10937 doi: 10.1007/s12517-015-1984-3
    [3] Zhang Z X. Kinetic energy and its applications in mining engineering. Int J Min Sci Technol, 2017, 27(2): 237 doi: 10.1016/j.ijmst.2017.01.009
    [4] Caldwell T. A Comparison of Non-explosive Rock Breaking Techniques [Dissertation]. Queensland: The University of Queensland, 2004
    [5] Schooler D R. The Use of Carbon Dioxide for Dislodging Coal in Mines [Dissertation]. Missouri: Missouri School of Mines and Metallurgy, 1944
    [6] Gao F, Tang, L H, Zhou K P, et al. Mechanism analysis of liquid carbon dioxide phase transition for fracturing rock masses. Energies, 2018, 11(11): 2909 doi: 10.3390/en11112909
    [7] Lu T K, Wang Z F, Yang H M, et al. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas. Int J Rock Mech Min Sci, 2015, 77: 300 doi: 10.1016/j.ijrmms.2015.03.034
    [8] Mellor M. Icebreaking Concepts[J/OL]. Cold Regions Research and Engineering Lab Hanover Nh, (1980-01)[2020-11-05]. https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/11985/1/SR-80-2.pdf
    [9] Campbell Sr R L. A review of methods for concrete removal [J/OL]. Army Engineer Waterways Experiment Station Vicksburg Ms Structures Lab(1982-04-01)[2020-10-02]. https://apps.dtic.mil/sti/pdfs/ADA114100.pdf
    [10] Singh S P. Non-explosive applications of the PCF concept for underground excavation. Tunn Undergr Space Technol, 1998, 13(3): 305 doi: 10.1016/S0886-7798(98)00062-5
    [11] Sun K M, Xin L W, Wu D. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion. Explos Shock Waves, 2018, 38(2): 302 doi: 10.11883/bzycj-2016-0230

    孫可明, 辛利偉, 吳迪. 超臨界CO2氣爆煤體致裂機理實驗研究. 爆炸與沖擊, 2018, 38(2):302 doi: 10.11883/bzycj-2016-0230
    [12] Sun K M, Xin L W, Wang T T, et al. Simulation research on law of coal fracture caused by supercritical CO2 explosion. J China Univ Min Technol, 2017, 46(3): 501

    孫可明, 辛利偉, 王婷婷, 等. 超臨界CO2氣爆煤體致裂規律模擬研究. 中國礦業大學學報, 2017, 46(3):501
    [13] Xie X F, Li X B, Li Q Y, et al. Liquid CO2 phase-transforming rock fracturing technology in pile-well excavation. J Cent South Univ Sci Technol, 2018, 49(8): 2031 doi: 10.11817/j.issn.1672-7207.2018.08.025

    謝曉鋒, 李夕兵, 李啟月, 等. 液態CO2相變破巖樁井開挖技術. 中南大學學報(自然科學版), 2018, 49(8):2031 doi: 10.11817/j.issn.1672-7207.2018.08.025
    [14] Han Y B. Mechanism Research on Increase Coal Gas Permeability by Liquid CO2 Phase Transition Fracturing Technique [Dissertation]. Jiaozuo: Henan Polytechnic University, 2014

    韓亞北. 液態二氧化碳相變致裂增透機理研究 [學位論文]. 焦作: 河南理工大學, 2014
    [15] Sun K M, Xin L W, Zhang S C, et al. Experimental study on laws of crack caused by gas burst of supercritical carbon dioxide. J Saf Sci Technol, 2016, 12(7): 27

    孫可明, 辛利偉, 張樹翠, 等. 超臨界CO2氣爆致裂規律實驗研究. 中國安全生產科學技術, 2016, 12(7):27
    [16] Sun K M, Wang J Y, Xin L W. Experimental study of variation pattern of gas pressure from explosion along fracture surface in supercritical CO2 gas explosion. J Exp Mech, 2019, 34(4): 693 doi: 10.7520/1001-4888-18-001

    孫可明, 王金彧, 辛利偉. 超臨界CO2氣爆致裂爆生氣體壓力沿破裂面變化規律實驗研究. 實驗力學, 2019, 34(4):693 doi: 10.7520/1001-4888-18-001
    [17] Zhou S T, Jiang N, He X, et al. Rock breaking and dynamic response characteristics of carbon dioxide phase transition fracturing considering the gathering energy effect. Energies, 2020, 13(6): 1336 doi: 10.3390/en13061336
    [18] Zhang Y N, Deng J R, Deng H W, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting. Int J Damage Mech, 2019, 28(7): 1038 doi: 10.1177/1056789518807532
    [19] Zhou H. Experimental Study on the Variation Rules of the Flow and Nozzle Impact Stress of Supercritical CO2 Gas Explosion [Dissertation]. Fuxin: Liaoning Technical University, 2019

    周航. 超臨界CO2氣爆爆生氣體管內流動及噴孔沖擊應力變化規律實驗研究 [學位論文]. 阜新: 遼寧工程技術大學, 2019
    [20] Zheng T Z. Distribution Characteristics of Gas-Phase Shock Energy Deriving from Liquid CO2 Phase Transition in the Borehole [Dissertation]. Fuxin: Liaoning Technical University, 2019

    鄭天照. 液態CO2相變氣爆爆破孔爆能分布特征研究 [學位論文]. 阜新: 遼寧工程技術大學, 2019
    [21] Ke B, Zhou K P, Xu C S, et al. Thermodynamic properties and explosion energy analysis of carbon dioxide blasting systems. Min Technol, 2019, 128(1): 39 doi: 10.1080/25726668.2018.1527982
    [22] Hu S B, Pang S G, Yan Z Y. A new dynamic fracturing method: deflagration fracturing technology with carbon dioxide. Int J Fract, 2019, 220(1): 99 doi: 10.1007/s10704-019-00403-8
    [23] Sun J Z. Applied Research on Permeability Increasing by Liquid Carbon Dioxide Phase Transition Blasting Based on Different Initiating Condition [Dissertation]. Xuzhou: China University of Mining and Technology, 2015

    孫建中. 基于不同爆破致裂方式的液態二氧化碳相變增透應用研究 [學位論文]. 徐州: 中國礦業大學, 2015
    [24] Chi L Y, Zhang Z X, Aalberg A, et al. Measurement of shock pressure and shock-wave attenuation near a blast hole in rock. Int J Impact Eng, 2019, 125: 27 doi: 10.1016/j.ijimpeng.2018.11.002
    [25] Xie X F, Li X B, Li Q Y, et al. Research and review about the liquid CO2 phase-transforming rock fracturing technology. J Railway Sci Eng, 2018, 15(6): 1406 doi: 10.3969/j.issn.1672-7029.2018.06.006

    謝曉鋒, 李夕兵, 李啟月, 等. 液態CO2相變破巖技術述評研究. 鐵道科學與工程學報, 2018, 15(6):1406 doi: 10.3969/j.issn.1672-7029.2018.06.006
    [26] Zhou X H, Men J L, Song D P, et al. Research on optimal borehole parameters of antireflection in coal seam by liquid CO2 blasting. Chin J Rock Mech Eng, 2016, 35(3): 524

    周西華, 門金龍, 宋東平, 等. 液態CO2爆破煤層增透最優鉆孔參數研究. 巖石力學與工程學報, 2016, 35(3):524
    [27] Zhou K P, Ke B, Li J L, et al. Pressure dynamic response and explosion energy of liquid carbon dioxide blasting system. Blasting, 2017, 34(3): 7 doi: 10.3963/j.issn.1001-487X.2017.03.002

    周科平, 柯波, 李杰林, 等. 液態CO2爆破系統壓力動態響應及爆炸能量分析. 爆破, 2017, 34(3):7 doi: 10.3963/j.issn.1001-487X.2017.03.002
    [28] Ke B, Zhou K P, Ren G F, et al. Positive phase pressure function and pressure attenuation characteristic of a liquid carbon dioxide blasting system. Energies, 2019, 12(21): 4134 doi: 10.3390/en12214134
    [29] Lei Y. A Theoretical and Experimental Study on Carbon Dioxide Phase Transition Induced Fracturing and Antireflection in Low-Permeability Coal Seams with Gas-Rich [Dissertation]. Chengdu: Southwest Petroleum University, 2018

    雷云. 低滲透高瓦斯煤層二氧化碳相變致裂增透理論及實驗研究 [學位論文]. 成都: 西南石油大學, 2018
    [30] Dong Q X, Wang Z F, Han Y B, et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing. China Saf Sci J, 2014, 24(11): 84

    董慶祥, 王兆豐, 韓亞北, 等. 液態CO2相變致裂的TNT當量研究. 中國安全科學學報, 2014, 24(11):84
    [31] Guo Y, Ke B, Wu Z M, et al. Thermodynamic properties of liquid carbon dioxide blasting system in process of phase transformation. Blasting, 2018, 35(4): 108 doi: 10.3963/j.issn.1001-487X.2018.04.020

    郭勇, 柯波, 吳著明, 等. 液態CO2爆破系統相變過程的熱力學特性研究. 爆破, 2018, 35(4):108 doi: 10.3963/j.issn.1001-487X.2018.04.020
    [32] Guo Y L. Fracturing Mechanisms and Functions of Improvement of Gas Drainage of Highly Pressurized Carbon Dioxide Gas System [Dissertation]. Jiaozuo: Henan Polytechnic University, 2017

    郭楊霖. 液態二氧化碳相變致裂機理及應用效果分析 [學位論文]. 焦作: 河南理工大學, 2017
    [33] Yang X L, Wen G C, Sun H T, et al. Environmentally friendly techniques for high gas content thick coal seam stimulation─multi-discharge CO2 fracturing system. J Nat Gas Sci Eng, 2019, 61: 71 doi: 10.1016/j.jngse.2018.11.006
    [34] Sun K M, Xin L W, Wu D, et al. Simulation of fracture law of supercritical CO2 explosion under initial stress condition. J Vib Shock, 2018, 37(12): 232

    孫可明, 辛利偉, 吳迪, 等. 初應力條件下超臨界CO2氣爆致裂規律模擬研究. 振動與沖擊, 2018, 37(12):232
    [35] Xiao C X. Experimental Study of Phase-Transforming Fracturing of Liquid Carbon Dioxide [Dissertation]. Wuhan: Hubei University of Technology, 2018

    肖誠旭. 液態二氧化碳相變致裂的試驗研究 [學位論文]. 武漢: 湖北工業大學, 2018
    [36] Huang X S, Zhang F L, Zhang Z, et al. Study on application of CO2 fracturing apparatus in pre-splitting blasting of rock deep hole. Blasting, 2017, 34(3): 131 doi: 10.3963/j.issn.1001-487X.2017.03.023

    黃曉實, 張范立, 張政, 等. 二氧化碳致裂器在巖石中深孔預裂爆破中的應用研究. 爆破, 2017, 34(3):131 doi: 10.3963/j.issn.1001-487X.2017.03.023
    [37] Zhou X H, Men J L, Wang P H, et al. Industry experimental research on improving permeability by underground liquid CO2 blasting. J Saf Sci Technol, 2015, 11(9): 76

    周西華, 門金龍, 王鵬輝, 等. 井下液態CO2爆破增透工業試驗研究. 中國安全生產科學技術, 2015, 11(9):76
    [38] Tian Z C. Crack Form and Influencing Factors of Liquid Carbon Dioxide Phase Transition Fracturing [Dissertation]. Xuzhou: China University of Mining and Technology, 2018

    田澤礎. 液態二氧化碳相變致裂裂縫形態及影響因素研究 [學位論文]. 徐州: 中國礦業大學, 2018
    [39] Wang M Y. Study on Crack Propagation Law of Liquid Carbon Dioxide Phase Transition Blasting and Its Application [Dissertation]. Xuzhou: China University of Mining and Technology, 2018

    王明宇. 液態二氧化碳相變爆破裂紋擴展規律研究及應用 [學位論文]. 徐州: 中國礦業大學, 2018
    [40] Wang Z F, Li H J, Chen X E, et al. Study on hole layout of liquid CO2 phase-transforming fracture technology for permeability improvement of coal seam. J Saf Sci Technol, 2015, 11(9): 11

    王兆豐, 李豪君, 陳喜恩, 等. 液態CO2相變致裂煤層增透技術布孔方式研究. 中國安全生產科學技術, 2015, 11(9):11
    [41] Li H J, Wang Z F, Chen X E, et al. Optimization of borehole layout parameters based on fracturing technology of liquid CO2 phase. Coal Geol Explor, 2017, 45(4): 31 doi: 10.3969/j.issn.1001-1986.2017.04.006

    李豪君, 王兆豐, 陳喜恩, 等. 液態CO2相變致裂技術在布孔參數優化中的應用. 煤田地質與勘探, 2017, 45(4):31 doi: 10.3969/j.issn.1001-1986.2017.04.006
    [42] Zhou X H, Men J L, Song D P, et al. Research on increasing coal seam permeability and promoting gas drainage with liquid CO2 blasting. China Saf Sci J, 2015, 25(2): 60

    周西華, 門金龍, 宋東平, 等. 煤層液態CO2爆破增透促抽瓦斯技術研究. 中國安全科學學報, 2015, 25(2):60
    [43] Kang J H, Zhou F B, Qiang Z Y, et al. Evaluation of gas drainage and coal permeability improvement with liquid CO2 gasification blasting. Adv Mech Eng, 2018, 10(4): 1
    [44] Ti Z Y, Chen B. Application of pressure relief technology of liquid CO2 fracturing roadway in Tingnan coal mine. Met Mine, 2019(4): 48

    題正義, 陳波. 亭南煤礦液態CO2致裂巷道卸壓技術的應用研究. 金屬礦山, 2019(4):48
    [45] Sun K M, Wang J Y, Xin L W. Aerodynamic selection research of bridge girder section in three-dimensional wind field. Chin J Appl Mech, 2019, 36(2): 466

    孫可明, 王金彧, 辛利偉. 不同應力差條件下超臨界CO2氣爆煤巖體氣楔作用次生裂紋擴展規律研究. 應用力學學報, 2019, 36(2):466
    [46] Sun K M, Xin L W, Wu D, et al. Mechanism of fracture caused by supercritical CO2 explosion under the impact of initial stress. Chin J Solid Mech, 2017, 38(5): 473

    孫可明, 辛利偉, 吳迪, 等. 初應力條件下超臨界CO2氣爆致裂規律研究. 固體力學學報, 2017, 38(5):473
    [47] Liu X X, Li Q Y, Feng G W, et al. Vibrational energy distribution of rock broken by phase transition of liquid carbon dioxide. Min Metall Eng, 2018, 38(3): 5 doi: 10.3969/j.issn.0253-6099.2018.03.002

    劉小雄, 李啟月, 馮國偉, 等. 液態二氧化碳相變破巖振動能量分布研究. 礦冶工程, 2018, 38(3):5 doi: 10.3969/j.issn.0253-6099.2018.03.002
    [48] Chen G, Li Q Y, Liu X X, et al. Research on energy distribution characters about liquid CO2 phase-transition broken rock vibration signal. Blasting, 2018, 35(2): 155 doi: 10.3963/j.issn.1001-487X.2018.02.027

    陳冠, 李啟月, 劉小雄, 等. 液態CO2相變破巖振動信號能量分布特征. 爆破, 2018, 35(2):155 doi: 10.3963/j.issn.1001-487X.2018.02.027
    [49] Tao M, Zhao H T, Li X B, et al. Comprehensive comparative analysis of liquid CO2 phase change fracturing and explosive rock fracturing. Blasting, 2018, 35(2): 41 doi: 10.3963/j.issn.1001-487X.2018.02.008

    陶明, 趙華濤, 李夕兵, 等. 液態CO2相變致裂破巖與炸藥破巖綜合對比分析. 爆破, 2018, 35(2):41 doi: 10.3963/j.issn.1001-487X.2018.02.008
    [50] Li Q Y, Liu X X, Wu Z Y, et al. Application of liquid CO2 phase change rock breaking technology in metro foundation pit excavation. J Railway Sci Eng, 2018, 15(1): 163 doi: 10.3969/j.issn.1672-7029.2018.01.023

    李啟月, 劉小雄, 吳正宇, 等. 液態CO2相變破巖技術在地鐵基坑開挖中的應用. 鐵道科學與工程學報, 2018, 15(1):163 doi: 10.3969/j.issn.1672-7029.2018.01.023
    [51] Liu G H, Wang H L. Application of carbon dioxide fracturing technology. Highway, 2018, 63(12): 72

    劉光輝, 王海亮. 二氧化碳致裂技術的應用研究. 公路, 2018, 63(12):72
    [52] Peng R, Huo Z G, Wen L. Study on anti-flying technology of carbon dioxide fracture. Coal Sci Technol, 2020, 48(Special): 134

    彭然, 霍中剛, 溫良. 二氧化碳致裂器止飛技術研究. 煤炭科學技術, 2020, 48(特刊): 134
    [53] Chen H D, Wang Z F, Qi L L, et al. Effect of liquid carbon dioxide phase change fracturing technology on gas drainage. Arab J Geosci, 2017, 10(14): 314 doi: 10.1007/s12517-017-3103-0
    [54] Chen H D, Wang Z F, Chen X E, et al. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. J CO2 Util, 2017, 19: 112 doi: 10.1016/j.jcou.2017.03.010
    [55] Wang Z F, Sun K M, Lu T K, et al. Experiment research on strengthening gas drainage effect with fracturing technique by liquid CO2 phase transition. J Henan Polytech Univ Nat Sci, 2015, 34(1): 1

    王兆豐, 孫小明, 陸庭侃, 等. 液態CO2相變致裂強化瓦斯預抽試驗研究. 河南理工大學學報(自然科學版), 2015, 34(1):1
    [56] Li F L, Cao Y X, Liu G F, et al. Technology of high-speed driving and outburst elimination by CO2 gas fracturing in Yuxi coal mine. China Min Mag, 2020, 29(4): 146

    李豐亮, 曹運興, 劉高峰, 等. 玉溪煤礦CO2氣相壓裂煤巷防突快速掘進技術. 中國礦業, 2020, 29(4):146
    [57] Cao Y X, Zhang J S, Zhai H, et al. CO2 gas fracturing: A novel reservoir stimulation technology in low permeability gassy coal seams. Fuel, 2017, 203: 197 doi: 10.1016/j.fuel.2017.04.053
    [58] Zhang J F, Cheng S F, Gao Z, et al. Practice and simulation of coal-rock mining by liquid carbon dioxide blasting. Coal Sci Technol, 2020, 48(Special): 24

    張嘉凡, 程樹范, 高壯, 等. 煤巖液態二氧化碳爆破開采實踐與模擬. 煤炭科學技術, 2020, 48(特刊): 24
    [59] Parsakhoo A, Lotfalian M. Demolition agent selection for rock breaking in mountain region of hyrcanian forests. Res J Environ Sci, 2009, 3(3): 384 doi: 10.3923/rjes.2009.384.391
    [60] Parsakhoo A, Lotfalian M, Hosseini S A. Forest roads planning and construction in Iranian forestry. J Civil Eng Constr Technol, 2010, 1(1): 14
    [61] Miller R C. Fundamental Study of Carbon Dioxide Blasting: An Experimental and Numerical Analysis of Surface Cleaning by A Particle-laden Turbulent Jet [Dissertation]. Michigan Technological University, 1994
    [62] Li H J, Gao B, Shi Y, et al. Application of super-critical CO2 source in seismic exploration. Equip Geophys Prospect, 2019, 29(1): 67 doi: 10.3969/j.issn.1671-0657.2019.01.018

    李海軍, 高斌, 史穎, 等. 超臨界二氧化碳震源在地震采集中的應用. 物探裝備, 2019, 29(1):67 doi: 10.3969/j.issn.1671-0657.2019.01.018
    [63] Li W, Chen Y, Wang F Y, et al. Feasibility study of developing one new type of seismic source via carbon dioxide phase transition. Chin J Geophys, 2020, 63(7): 2605 doi: 10.6038/cjg2020N0335

    李穩, 陳颙, 王夫運, 等. 二氧化碳相變技術應用于新型震源研發的可行性研究. 地球物理學報, 2020, 63(7):2605 doi: 10.6038/cjg2020N0335
    [64] Mellor M. Breakage of Floating Ice by Compressed Gas Blasting. Twin Cities: The Laboratory, 1972
    [65] Xu C, Dou B, Tian H, et al. Process of carbon dioxide blasting to build EGS thermal reservoir. Geol Sci Technol Inf, 2019, 38(5): 247

    徐超, 竇斌, 田紅, 等. 二氧化碳爆破致裂建造增強型地熱系統熱儲層工藝探討. 地質科技情報, 2019, 38(5):247
    [66] Fan Y C, Qin B T, Zhou Q, et al. Liquid CO2 phase transition fracturing technology and its application in enhancing gas drainage of coal mines. Adsorpt Sci Technol, 2020, 38(9-10): 393 doi: 10.1177/0263617420952563
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  1842
  • HTML全文瀏覽量:  672
  • PDF下載量:  227
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-05
  • 網絡出版日期:  2021-01-05
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回