<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種改進的lp-RWMKE-ELM故障診斷模型

劉星 趙建印 朱敏 張偉

劉星, 趙建印, 朱敏, 張偉. 一種改進的lp-RWMKE-ELM故障診斷模型[J]. 工程科學學報, 2022, 44(1): 82-94. doi: 10.13374/j.issn2095-9389.2020.07.09.001
引用本文: 劉星, 趙建印, 朱敏, 張偉. 一種改進的lp-RWMKE-ELM故障診斷模型[J]. 工程科學學報, 2022, 44(1): 82-94. doi: 10.13374/j.issn2095-9389.2020.07.09.001
LIU Xing, ZHAO Jian-yin, ZHU Min, ZHANG Wei. Research on an improved lp-RWMKE-ELM fault diagnosis model[J]. Chinese Journal of Engineering, 2022, 44(1): 82-94. doi: 10.13374/j.issn2095-9389.2020.07.09.001
Citation: LIU Xing, ZHAO Jian-yin, ZHU Min, ZHANG Wei. Research on an improved lp-RWMKE-ELM fault diagnosis model[J]. Chinese Journal of Engineering, 2022, 44(1): 82-94. doi: 10.13374/j.issn2095-9389.2020.07.09.001

一種改進的lp-RWMKE-ELM故障診斷模型

doi: 10.13374/j.issn2095-9389.2020.07.09.001
基金項目: 國家自然科學基金資助項目(11802338)
詳細信息
    通訊作者:

    E-mail: xinghandeqipan@sina.com

  • 中圖分類號: V243.2

Research on an improved lp-RWMKE-ELM fault diagnosis model

More Information
  • 摘要: 針對裝備各類故障樣本分布不平衡、現有算法故障診斷精度較低的問題,通過引入p范數約束多核極限學習機和基于AdaBoost的集成學習策略,定義了一種p范數約束下正則化加權多核集成極限學習機的故障診斷模型。首先,在p范數約束下,基于各類故障樣本自身規模,分別進行了兩種自適應的樣本權重分配;其次,在每層分類器的優化中,將多核學習的多源數據融合能力和極限學習機運算高效的特點相結合,同時,將樣本的權重$ {\boldsymbol{W}} $更新融入到多核極限學習機的優化進程;最后,通過Adaboost集成策略,自適應提升富含信息的樣本在模型中的權重,從而顯著提升故障診斷的精度。以6個UCI公共數據集以及1個實裝案例為例,進行了故障診斷實驗。結果表明,與核極限學習機、加權核極限學習機(使用$ {{\boldsymbol{W}}^{\left( 1 \right)}} $$ {{\boldsymbol{W}}^{\left( 2 \right)}} $加權方式)以及多核極限學習機(在1范數和p范數約束下)相比,診斷精度有顯著提升;范數約束形式對模型的診斷性能影響有限。

     

  • 圖  1  lp-RWMKE-ELM診斷模型

    Figure  1.  Diagnosis model based on lp-RWMKE-ELM

    圖  2  權重分布。(a)線性層分類器權重分布;(b)高斯層分類器權重分布

    Figure  2.  Weight distribution: (a) weight distribution of classifier on linear layer; (b) weight distribution of classifier on gaussian layer

    圖  3  各模型在各個UCI數據集上診斷性能比較

    Figure  3.  Comparison of the diagnostic performance of various models on various UCI data sets

    圖  4  范數約束形式對模型診斷精度的影響

    Figure  4.  Influence of norm-constrained forms on the diagnostic accuracy of the model

    圖  5  范數約束形式對模型時間開銷的影響

    Figure  5.  Influence of norm-constrained forms on model time cost

    圖  6  前端接收機工作原理圖

    Figure  6.  Front-end receiver working principle diagram

    圖  7  前端接收機的診斷精度對比圖

    Figure  7.  Comparison of the diagnostic accuracy of the front-end receiver

    圖  8  前端接收機實測數據時間開銷對比圖

    Figure  8.  Comparison chart of the training and testing time for the models of front-end receiver

    表  1  混淆矩陣

    Table  1.   Confusion matrix

    The true situationClassification result
    PositiveNegative
    PositiveTP (True positive)FN(False negative)
    NegativeFP (False positive)TN(True false negative)
    下載: 導出CSV

    表  2  UCI數據集描述[22]

    Table  2.   UCI data set description[22]

    DatasetsInstancesNumber of classesNumber of featuresSize of classes
    Diabetes76828268, 500
    Ionosphere351234126, 225
    Vowel8716372, 89, 172, 151, 207, 180
    Cancer68329444, 239
    Bupa34526145, 200
    Thyroid21535150, 35, 30
    下載: 導出CSV

    表  3  各模型在各個UCI數據集上診斷性能比較

    Table  3.   Comparison of the diagnostic performance of various models on various UCI data sets

    DatasetsModelG-meanF-measure-microF-measure-macroParameter,C
    DiabetesKELM0.6119±0.04180.615±0.04320.6126±0.04252(6)
    WKELM-W10.6252±0.05290.6301±0.05290.6269±0.0532(8)
    WKELM-W20.6305±0.04310.6370±0.04320.6331±0.04292(9)
    l1-MKELM0.638±0.03320.6383±0.03430.6373±0.03382(3)
    lp-MKELM0.6462±0.01310.654±0.01520.6495±0.01352(10)
    ITDSMM-KELM0.6387±0.02410.655±0.02430.6467±0.02382(13)
    lp-RWMKE-ELM-W10.6883±0.06120.6920±0.05810.6894±0.05962(3)
    lp-RWMKE-ELM-W20.7053±0.05880.7080±0.05670.7059±0.05752(3)
    IonosphereKELM0.7955±0.05520.8607±0.03530.8335±0.04522(5)
    WKELM-W10.8519±0.05550.8964±0.03560.8791±0.04472(9)
    WKELM-W20.8309±0.07060.8843±0.03620.8624±0.05122(8)
    l1-MKELM0.9008±0.03150.9171±0.02210.9081±0.02592(3)
    lp-MKELM0.8889±0.02650.9146±0.01690.9031±0.02012(9)
    ITDSMM-KELM0.8758±0.04610.9157±0.03050.9021±0.03792(14)
    lp-RWMKE-ELM-W10.9241±0.03370.9429±0.02860.9361±0.03212(3)
    lp-RWMKE-ELM-W20.9332±0.03460.9529±0.02340.9468±0.02682(3)
    VowelKELM0.8041±0.03560.8208±0.02590.8045±0.02752(6)
    WKELM-W10.8048±0.01490.8112±0.02730.8027±0.02172(5)
    WKELM-W20.7972±0.01760.817±0.02730.7965±0.02252(10)
    l1-MKELM0.8121±0.03180.8343±0.02730.8063±0.03292(2)
    lp-MKELM0.8102±0.0650.8362±0.02610.8154±0.03352(5)
    ITDSMM-KELM0.8113±0.03580.8237±0.0250.8174±0.02792(15)
    lp-RWMKE-ELM-W10.8222±0.04990.8659±0.03360.8454±0.03892(3)
    lp-RWMKE-ELM-W20.8325±0.03410.8728±0.01870.8531±0.02472(3)
    CancerKELM0.9192±0.02520.9319±0.01710.9242±0.01982(8)
    WKELM-W10.9212±0.02760.9445±0.01790.9368±0.02132(7)
    WKELM-W20.9328±0.02030.9409±0.01590.9348±0.01792(6)
    l1-MKELM0.9345±0.02890.9453±0.0210.9391±0.02412(5)
    lp-MKELM0.9557±0.01610.9562±0.01370.9522±0.0152(9)
    ITDSMM-KELM0.9498±0.06140.9574±0.01420.9529±0.01582(11)
    lp-RWMKE-ELM-W10.9744±0.01980.9781±0.00520.9759±0.00562(4)
    lp-RWMKE-ELM-W20.974±0.01540.9737±0.01510.9713±0.01652(3)
    BupaKELM0.5897±0.04620.6063±0.04240.5953±0.04432(5)
    WKELM-W10.6203±0.04980.6232±0.05230.6185±0.052(9)
    WKELM-W20.6482±0.04040.6473±0.04180.644±0.04122(11)
    l1-MKELM0.6464±0.04180.6473±0.04640.6437±0.04342(5)
    lp-MKELM0.6272±0.0490.6473±0.05860.635±0.05542(9)
    ITDSMM-KELM0.6214±0.06140.6425±0.07310.6295±0.0682(11)
    lp-RWMKE-ELM-W10.7052±0.04590.7198±0.05860.7111±0.05372(4)
    lp-RWMKE-ELM-W20.6762±0.04780.7101±0.03830.6924±0.04322(3)
    ThyroidKELM0.841±0.08610.9147±0.04330.8757±0.0662(7)
    WKELM-W10.8765±0.07590.9302±0.03470.8962±0.05242(6)
    WKELM-W20.8753±0.06620.9349±0.02640.9±0.04282(7)
    l1-MKELM0.92±0.07120.9651±0.03530.9468±0.05072(3)
    lp-MKELM0.9051±0.08770.9535±0.03290.9308±0.0512(3)
    ITDSMM-KELM0.9139±0.07960.9574±0.03730.9374±0.05592(6)
    lp-RWMKE-ELM-W10.9231±0.04710.9628±0.01270.9438±0.02212(2)
    lp-RWMKE-ELM-W20.9877±0.02170.9907±0.01270.9875±0.01712(4)
    下載: 導出CSV

    表  4  范數約束形式對模型診斷性能的影響

    Table  4.   Influence of norm-constrained forms on model diagnostic performance

    Evaluation index, pTraining time/sTesting time/sG-meanF-measure-microF-measure-macro
    32/3118.70240.00520.82470.86710.8427
    16/159.08740.00220.82470.86710.8427
    8/710.65090.00120.82470.86710.8427
    4/38.53220.0020.82470.86710.8427
    34.45380.00120.8410.87280.8527
    53.47176.82×10?40.85010.87860.8597
    73.04476.04×10?40.85010.87860.8597
    92.64615.61×10?40.85010.87860.8597
    112.62825.59×10?40.85010.87860.8597
    132.72075.64×10?40.86520.88440.872
    152.30175.62×10?40.86520.88440.872
    下載: 導出CSV

    表  5  前端接收機數據集

    Table  5.   The front-end receiver data set

    Serial numberFeature 1Feature 2Feature 3Feature 4Feature 5Feature 6Feature 7Feature 8Feature 9Feature 10Feature 11Feature 12State
    10.1080.0920.280.9120.1080.6980.7770.6410.6090.6270.3570.702Normal
    20.2630.6890.1650.9010.1930.3770.1080.5670.5210.2250.7360.438
    30.0730.3710.3440.4860.10.8890.5240.5450.4740.050.2380.724
    460.7010.4770.3670.7410.4270.8360.1510.7910.9270.7880.6840.583Fault
    480.7980.3290.2780.7660.5580.8690.5090.5450.10.2830.7040.328
    1210.6710.6850.0290.4730.5550.3280.9140.7420.230.6650.4010.752
    1220.9470.4440.1450.3420.80.560.4840.6020.120.0890.3630.126
    1230.0440.5320.2260.3360.7180.2460.4840.0640.6270.1980.8460.649
    下載: 導出CSV

    表  6  前端接收機的診斷精度

    Table  6.   Diagnostic accuracy of the front-end receiver

    ModelG-meanF-measure-microF-measure-macroParameter,C
    KELM0.9051±0.0540.9038±0.04580.912±0.04472(4)
    WKELM-W10.9279±0.06350.9231±0.06660.9316±0.05932(10)
    WKELM-W20.9194±0.00980.9103+0.02220.9236±0.01532(10)
    l1-MKELM0.9087±0.0610.9115±0.05750.9184±0.05512(7)
    lp-MKELM0.9501±0.0220.9359±0.02220.9448±0.01982(7)
    ITDSMM-KELM0.9118±0.04740.9308±0.03220.9339±0.03372(17)
    lp-RWMKE-ELM-W10.972±0.02980.9692±0.03220.9732±0.0282(3)
    lp-RWMKE-ELM-W20.9683±0.03070.9691±0.03220.9728±0.02822(3)
    下載: 導出CSV

    表  7  前端接收機診斷時間開銷

    Table  7.   Diagnosis time cost of the front-end receiver

    ModelTraining time/sTesting time/sParameter,C
    ELM5.92E-043.18×10?42(4)
    WKELM-W10.00190.00112(10)
    WKELM-W20.0021.0010?32(10)
    l1-MKELM0.02050.00152(7)
    lp-MKELM0.0150.00282(7)
    ITDSMM-KELM0.0250.01942(17)
    lp-RWMKE-ELM-W10.03572.65×10?42(3)
    lp-RWMKE-ELM-W20.02962.50×10?42(3)
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ao Y C, Shi Y B, Zhang W, et al. An approximate calculation of ratio of normal variables and its application in analog circuit fault diagnosis. J Electron Test, 2013, 29(4): 555 doi: 10.1007/s10836-013-5382-z
    [2] Han H, Wang H J, Tian S L, et al. A new analog circuit fault diagnosis method based on improved mahalanobis distance. J Electron Test, 2013, 29(1): 95 doi: 10.1007/s10836-012-5342-z
    [3] Tang X F, Xu A Q. Practical analog circuit diagnosis based on fault features with minimum ambiguities. J Electron Test, 2016, 32(1): 83 doi: 10.1007/s10836-015-5561-1
    [4] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feed forward neural networks // Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest, 2004: 985
    [5] Qin H Y, Zhou H P, Cao J W. Imbalanced learning algorithm based intelligent abnormal electricity consumption detection. Neurocomputing, 2020, 402: 112 doi: 10.1016/j.neucom.2020.03.085
    [6] He H B, Garcia E A. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21(9): 1263 doi: 10.1109/TKDE.2008.239
    [7] Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets // Proceedings of the 15th European Conference on Machine Learning. Pisa, 2004: 39
    [8] Zheng L K, Xiang Y, Sheng C X. Optimization-based improved kernel extreme learning machine for rolling bearing fault diagnosis. J Braz Soc Mech Sci Eng, 2019, 41: 619
    [9] Deng W Y, Zheng Q H, Chen L. Regularized extreme learning machine // IEEE Symposium on Computational Intelligence and Data Mining (CIDM 09). Nashville, 2009: 389
    [10] Zong W W, Huang G B, Chen Y Q. Weighted extreme learning machine for imbalance learning. Neurocomputing, 2013, 101: 229 doi: 10.1016/j.neucom.2012.08.010
    [11] Mirza B, Lin Z P, Toh K A. Weighted online sequential extreme learning machine for class imbalance learning. Neural Process Lett, 2013, 38(3): 465 doi: 10.1007/s11063-013-9286-9
    [12] Mao W T, Wang J W, Xue Z N. An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern, 2017, 8(4): 1333 doi: 10.1007/s13042-016-0509-z
    [13] Yu H Y, Sun X Y, Yan X Z. Sequential prediction for imbalanced data stream via weighted OS-ELM and dynamic GAN. Intell Data Anal, 2019, 23(6): 1191 doi: 10.3233/IDA-184377
    [14] Zhang Y, Liu B, Cai J, et al. Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution. Neural Comput Appl, 2017, 28: 259 doi: 10.1007/s00521-016-2342-4
    [15] Zhang W, Xu A Q. Application of MKL model incorporated within-class scatter in analog circuit diagnosis. Comput Eng Appl, 2018, 54(9): 5 doi: 10.3778/j.issn.1002-8331.1712-0425

    張偉, 許愛強. 集成散度的MKL模型在模擬電路診斷中的應用. 計算機工程與應用, 2018, 54(9):5 doi: 10.3778/j.issn.1002-8331.1712-0425
    [16] Ergul U, Bilgin G. MCK-ELM: multiple composite kernel extreme learning machine for hyper spectral images. Neural Comput Appl, 2020, 32(11): 6809 doi: 10.1007/s00521-019-04044-9
    [17] Yu H Y, Sun X Y, Wang J. Ensemble OS-ELM based on combination weight for data stream classification. Appl Intell, 2019, 49(6): 2382 doi: 10.1007/s10489-018-01403-2
    [18] Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng, 2006, 18(1): 63 doi: 10.1109/TKDE.2006.17
    [19] Raghuwanshi B S, Shukla S. Class-specific cost-sensitive boosting weighted ELM for class imbalance learning. Memetic Comput, 2019, 11(3): 263 doi: 10.1007/s12293-018-0267-4
    [20] Mirza B, Lin Z P, Liu N. Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing, 2015, 149: 316 doi: 10.1016/j.neucom.2014.03.075
    [21] Li K, Kong X F, Lu Z, et al. Boosting weighted ELM for unbalanced learning. Neurocomputing, 2014, 128: 15 doi: 10.1016/j.neucom.2013.05.051
    [22] Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern, 2012, 42(2): 513 doi: 10.1109/TSMCB.2011.2168604
    [23] Liu X W, Wang L, Huang G B, et al. Multiple kernel extreme learning machine. Neurocomputing, 2015, 149: 253 doi: 10.1016/j.neucom.2013.09.072
    [24] Vong C M, Ip W F, Wong P K, et al. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing, 2014, 128: 136 doi: 10.1016/j.neucom.2012.11.056
    [25] Zhang P B, Yang Z X. A novel AdaBoost framework with robust threshold and structural optimization. IEEE Trans Cybern, 2018, 48(1): 64 doi: 10.1109/TCYB.2016.2623900
    [26] Phoungphol P, Zhang Y Q, Zhao Y C. Robust multiclass classification for learning from imbalanced biomedical data. Tsinghua Sci Technol, 2012, 17(6): 619 doi: 10.1109/TST.2012.6374363
  • 加載中
圖(8) / 表(7)
計量
  • 文章訪問數:  999
  • HTML全文瀏覽量:  353
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-09
  • 網絡出版日期:  2020-09-16
  • 刊出日期:  2022-01-01

目錄

    /

    返回文章
    返回