<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

單軸壓縮條件下裂隙粗糙度對滲透系數的影響

王帥 于慶磊 王玲

王帥, 于慶磊, 王玲. 單軸壓縮條件下裂隙粗糙度對滲透系數的影響[J]. 工程科學學報, 2021, 43(7): 915-924. doi: 10.13374/j.issn2095-9389.2020.05.26.001
引用本文: 王帥, 于慶磊, 王玲. 單軸壓縮條件下裂隙粗糙度對滲透系數的影響[J]. 工程科學學報, 2021, 43(7): 915-924. doi: 10.13374/j.issn2095-9389.2020.05.26.001
WANG Shuai, YU Qing-lei, WANG Ling. Effect of fracture roughness on permeability coefficient under uniaxial compression[J]. Chinese Journal of Engineering, 2021, 43(7): 915-924. doi: 10.13374/j.issn2095-9389.2020.05.26.001
Citation: WANG Shuai, YU Qing-lei, WANG Ling. Effect of fracture roughness on permeability coefficient under uniaxial compression[J]. Chinese Journal of Engineering, 2021, 43(7): 915-924. doi: 10.13374/j.issn2095-9389.2020.05.26.001

單軸壓縮條件下裂隙粗糙度對滲透系數的影響

doi: 10.13374/j.issn2095-9389.2020.05.26.001
基金項目: 國家自然科學基金資助項目(51574060);國家重點研發計劃資助項目(2016YFC0801602);唐山市科技計劃資助項目(19130216g)
詳細信息
    通訊作者:

    E-mail:wangshuai@ncst.edu.cn

  • 中圖分類號: TG142.71

Effect of fracture roughness on permeability coefficient under uniaxial compression

More Information
  • 摘要: 裂隙粗糙度是影響裂隙巖體滲流特性和流體流動復雜性的重要因素,為了深入研究單軸壓縮條件下粗糙度對滲透系數的影響,采用3D打印技術和數字建模方法制備了粗糙度不同的裂隙試樣,通過自制的試驗裝置對不同法向壓力下的裂隙試樣進行了試驗。結果表明,在沒有法向壓力的條件下,隨著粗糙度的增加,滲透系數以負指數函數形式減小,采用Forchheimer方程定量的分析了滲流流量與水力梯度之間的非線性關系,Forchheimer方程可以很好地描述粗糙裂隙表面的流動過程,線性項系數隨著粗糙度的增大而減小,非線性項系數隨著粗糙度的增大而增大;在恒定法向壓力且大于水壓的條件下,裂隙試樣的滲透系數隨著粗糙度的增大線性減小,隨著水壓的增大,粗糙度對滲透系數的影響作用增強;定義了系數$\delta $,分析了在有無法向壓力條件下,粗糙度對滲透系數影響的差異性,$\delta $隨著水力梯度的增加而增加,隨著法向壓力的增加而減小。研究結果可以加深對粗糙裂隙表面流體流動的認識,為進一步研究巖體流動特性奠定堅實的基礎。

     

  • 圖  1  掃描JRC的標準曲線圖

    Figure  1.  Standard profile curve of JRC

    圖  2  吻合的裂隙曲線圖

    Figure  2.  Curve diagram of mating fracture

    圖  3  粗糙裂隙三維模型示意圖

    Figure  3.  Rough fracture 3D model diagram

    圖  4  Makebot程序中建立的三維模型

    Figure  4.  3D model established in Makebot

    圖  5  打印成型的三維實體模型

    Figure  5.  3D solid model of printing molding

    圖  6  RayBot 3D打印機

    Figure  6.  RayBot 3D printer

    圖  7  試驗系統裝置示意圖

    Figure  7.  Schematic of the test system device

    圖  8  法向加載系統

    Figure  8.  Normal loading system

    圖  9  模擬裂隙系統

    Figure  9.  Simulated fracture system

    圖  10  不同水壓下JRC與K0的關系曲線

    Figure  10.  Relationship between JRC and K0 under different hydraulics pressures

    圖  11  流體在粗糙裂隙中流動示意圖

    Figure  11.  Schematic of fluid flow in rough fracture

    圖  12  不同粗糙度裂隙$ - \nabla P$Q的關系曲線

    Figure  12.  Relationship between $ - \nabla P$ and Q with different roughness fractures

    圖  13  法向壓力恒定不同水壓下JRC與K的關系曲線。(a)法向壓力為0.25 MPa;(b)法向壓力為0.50 MPa; (c)法向壓力為0.75 MPa;(d)法向壓力為1.00 MPa

    Figure  13.  Relationship between JRC and K under different water pressures when normal pressure is constant: (a) normal pressure of 0.25 MPa; (b) normal pressure of 0.50 MPa; (c) normal pressure of 0.75 MPa; (d) normal pressure of 1.00 MPa

    圖  14  參數$\delta $與壓力梯度$ - \nabla P$的關系曲線。(a)法向壓力為0.25 MPa;(b)法向壓力為1.00 MPa

    Figure  14.  Relationship between $\delta $ and $ - \nabla P$: (a) normal pressure of 0.25 MPa; (b) normal pressure of 1.00 MPa

    表  1  數字化后JRC的標準曲線圖[15]

    Table  1.   Standard curve diagram of JRC after digitization

    NumberStandard joint profileJRC value (Specific value)
    10–2 (0.4)
    22–4 (2.8)
    34–6 (5.8)
    46–8 (6.7)
    58–10 (9.5)
    610–12 (10.8)
    712–14 (12.8)
    814–16 (14.5)
    916–18 (16.7)
    1018–20 (18.7)
    下載: 導出CSV

    表  2  無法向壓力改變水壓的試驗方案

    Table  2.   Test scheme for changing hydraulic pressures without normal pressures

    NumberHydraulic pressure,
    P/MPa
    Change value in fracture
    aperture/mm
    10.040.16
    20.090.17
    30.140.19
    40.190.21
    50.240.23
    60.290.24
    下載: 導出CSV

    表  3  Forchheimer 方程擬合的數值

    Table  3.   Values of Forchheimer equation fitting

    JRC (Specific value)Coefficient, ACoefficient, BCorrelation coefficient, R2
    6 (10.8)3.19?0.990.99
    7 (12.8)1.84?0.490.99
    8 (14.5)1.39?0.310.99
    9 (16.7)1.08?0.150.99
    10 (18.7)0.86?0.090.99
    下載: 導出CSV

    表  4  線性函數擬合的數值

    Table  4.   Values of linear function fitting

    Normal pressure,
    F/MPa
    Hydraulic pressure, P/MPaCoefficient,
    a
    Coefficient,
    b
    Correlation coefficient, R2Normal pressure,
    F/MPa
    Hydraulic pressure, P/MPaCoefficient,
    a
    Coefficient,
    b
    Correlation coefficient, R2
    0.250.0426.54?1.040.981.000.0412.16?0.510.94
    0.0928.72?1.120.990.0913.23?0.510.94
    0.1431.51?1.230.980.1416.18?0.610.97
    0.1935.21?1.350.970.1917.63?0.670.99
    0.2445.29?1.890.980.2425.34?1.050.96
    0.2960.13?2.650.980.2936.60?1.640.98
    下載: 導出CSV

    表  5  法向壓力恒定不同水力壓力下滲透系數的變化量

    Table  5.   Permeability change under different hydraulic pressures and constant normal pressure

    Normal pressure, F/MPaHydraulic pressure, P/MPaPermeability change, K/(m·s?1)Normal pressure, F/MPaHydraulic pressure, P/MPaPermeability change, K/(m·s?1)
    0.250.048.410.750.043.61
    0.098.870.093.33
    0.149.670.144.53
    0.1910.370.196.56
    0.2415.290.249.37
    0.2920.590.2913.88
    0.500.046.371.000.043.75
    0.096.720.094.17
    0.147.180.144.53
    0.199.140.195.12
    0.2410.660.248.53
    0.2916.870.2912.12
    下載: 導出CSV

    表  6  不同粗糙度裂隙滲流寬度的變化情況

    Table  6.   Variation of apertures of fractures with different roughnesses

    Normal pressure,
    F/MPa
    Hydraulic pressure,
    P/MPa
    Change value in fracture aperture with different JCR, e/mmNormal pressure,
    F/MPa
    Hydraulic pressure,
    P/MPa
    Change value in fracture aperture with different JCR, e /mm
    10.812.814.516.718.710.812.814.516.718.7
    0.250.040.060.050.040.050.041.000.040.030.030.020.020.02
    0.090.060.050.050.050.040.090.030.030.020.020.02
    0.140.070.060.060.050.040.140.030.040.030.020.02
    0.190.070.060.060.050.040.190.040.040.030.030.02
    0.240.080.070.0.60.060.050.240.040.040.040.030.03
    0.290.080.080.070.060.060.290.040.040.040.030.03
    下載: 導出CSV

    表  7  負指數函數擬合的數值

    Table  7.   Values of negative exponential function fitting

    Hydraulic pressure, F/MPaCoefficient, aCoefficient, bCorrelation coefficient, R2
    0.0417.15?1.720.95
    0.0926.88?1.860.91
    0.1465.03?2.180.96
    0.1988.40?2.290.97
    0.2490.23?2.430.96
    0.29102.56?3.010.95
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Rong G, Yang J, Cheng L, et al. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process. J Hydrol, 2016, 541: 1385 doi: 10.1016/j.jhydrol.2016.08.043
    [2] Wang Z R, Song P, Wen Z Y, et al. Control of fracturing behavior of fractured reservoir under horizontal wells. Chin J Eng, 2020, 42(11): 1449

    王志榮, 宋沛, 溫震洋, 等. 裂隙性儲層水平井起裂行為的控制. 工程科學學報, 2020, 42(11):1449
    [3] Ju Y, Dong J B, Gao F, et al. Evaluation of water permeability of rough fractures based on a self-affine fractal model and optimized segmentation algorithm. Adv Water Resources, 2019, 129: 99 doi: 10.1016/j.advwatres.2019.05.007
    [4] Rezaei Niya S M, Selvadurai A P S. Correlation of joint roughness coefficient and permeability of a fracture. Int J Rock Mech Min Sci, 2019, 113: 150 doi: 10.1016/j.ijrmms.2018.12.008
    [5] Zhang X, Chai J R, Qin Y, et al. Experimental study on seepage and stress of single-fracture radiation flow. KSCE J Civil Eng, 2019, 23(3): 1132 doi: 10.1007/s12205-019-1519-7
    [6] Zhu J T, Cheng Y Y. Effective permeability of fractal fracture rocks: Significance of turbulent flow and fractal scaling. Int J Heat Mass Transfer, 2018, 116: 549 doi: 10.1016/j.ijheatmasstransfer.2017.09.026
    [7] Xu G X, Zhang Y X, Ha Q L. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study. J Hydraulic Eng, 2003(3): 74 doi: 10.3321/j.issn:0559-9350.2003.03.014

    許光祥, 張永興, 哈秋舲. 粗糙裂隙滲流的超立方和次立方定律及其試驗研究. 水利學報, 2003(3):74 doi: 10.3321/j.issn:0559-9350.2003.03.014
    [8] Su B Y, Zhan M L, Zhao J. Study on fracture seepage in the imitative nature rock. Chin J Geotech Eng, 1995(5): 19 doi: 10.3321/j.issn:1000-4548.1995.05.004

    速寶玉, 詹美禮, 趙堅. 仿天然巖體裂隙滲流的實驗研究. 巖土工程學報, 1995(5):19 doi: 10.3321/j.issn:1000-4548.1995.05.004
    [9] Ju Y, Zhang Q G, Yang Y M, et al. An experimental investigation on the mechanism of fluid flow through single rough fracture of rock. Sci Sin Technol, 2013, 43(10): 1144 doi: 10.1360/ze2013-43-10-1144

    鞠楊, 張欽剛, 楊永明, 等. 巖體粗糙單裂隙流體滲流機制的實驗研究. 中國科學: 技術科學, 2013, 43(10):1144 doi: 10.1360/ze2013-43-10-1144
    [10] He Y L, Tao Y J, Yang L Z. Experimental research on hydraulic behaviors in a single joint with various values of JRC. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 3235

    賀玉龍, 陶玉敬, 楊立中. 不同節理粗糙度系數單裂隙滲流特性試驗研究. 巖石力學與工程學報, 2010, 29(增刊 1):3235
    [11] Duan M B, Li G, Meng Y F, et al. Research on regulation of fracture seepage in different joint roughness coefficients. J Water Resour Water Eng, 2013, 24(5): 41 doi: 10.11705/j.issn.1672-643X.2013.05.009

    段慕白, 李皋, 孟英峰, 等. 不同節理粗糙度系數的裂隙滲流規律研究. 水資源與水工程學報, 2013, 24(5):41 doi: 10.11705/j.issn.1672-643X.2013.05.009
    [12] Zhao J W, Lan H D, Yang K, et al. High-resolution fused deposition 3D printing based on electric-field-driven jet. Chin J Eng, 2019, 41(5): 652

    趙佳偉, 蘭紅波, 楊昆, 等. 電場驅動熔融噴射沉積高分辨率3D打印. 工程科學學報, 2019, 41(5):652
    [13] Ju Y, Xie H P, Zheng Z M, et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chin Sci Bull, 2014, 59(32): 3109 doi: 10.1360/csb2014-59-32-3109

    鞠楊, 謝和平, 鄭澤民, 等. 基于3D打印技術的巖體復雜結構與應力場的可視化方法. 科學通報, 2014, 59(32):3109 doi: 10.1360/csb2014-59-32-3109
    [14] Wang P T, Liu Y, Zhang L, et al. Preliminary experimental study on uniaxial compressive properties of 3D printed fractured rock models. Chin J Rock Mech Eng, 2018, 37(2): 364

    王培濤, 劉雨, 章亮, 等. 基于3D打印技術的裂隙巖體單軸壓縮特性試驗初探. 巖石力學與工程學報, 2018, 37(2):364
    [15] Huang Y B, Zhang Y J, Yu Z W, et al. Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems. Renewable Energy, 2019, 135: 846 doi: 10.1016/j.renene.2018.12.063
    [16] Zhang Z Y, Nemcik J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol, 2013, 477: 139 doi: 10.1016/j.jhydrol.2012.11.024
    [17] Chen Y D, Lian H J, Liang W G, et al. The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses. Int J Rock Mech Min Sci, 2019, 113: 59 doi: 10.1016/j.ijrmms.2018.11.017
    [18] Yin Q, He L X, Jing H W, et al. Quantitative estimates of nonlinear flow characteristics of deformable rough-walled rock fractures with various lithologies. Processes, 2018, 6(9): 149 doi: 10.3390/pr6090149
    [19] Zhou J Q, Hu S H, Fang S, et al. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci, 2015, 80: 202 doi: 10.1016/j.ijrmms.2015.09.027
    [20] Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock Mech, 1977, 10(1-2): 1 doi: 10.1007/BF01261801
    [21] Zhang Q, Li X C, Hu S B, et al. Permeability evolution of coupling granite joint during shearing under high-stress condition. Rock Soil Mech, 2018, 39(10): 3641

    張強, 李小春, 胡少斌, 等. 高應力下花崗巖耦合節理在剪切過程中滲透率演化特性. 巖土力學, 2018, 39(10):3641
    [22] Wu Y Q, Zhang Z Y. Introduction to Rock Mass Hydraulics. Chengdu: Southwest Jiaotong University Press, 1994

    仵彥卿, 張卓元. 巖體水力學導論. 成都: 西南交通大學出版社, 1994
    [23] Wang Z H, Xu C S, Dowd P. A modified cubic law for single-phase saturated laminar flow in rough rock fractures. Int J Rock Mech Min Sci, 2018, 103: 107 doi: 10.1016/j.ijrmms.2017.12.002
    [24] Pan R J, He X. Seepage law of rough single fracture under the influence of tortuosity of rock fracture surface. J Liaoning Tech Univ Nat Sci Ed, 2020, 39(4): 293

    潘汝江, 何翔. 巖石斷裂面曲折度影響下的粗糙單裂隙滲流規律. 遼寧工程技術大學學報(自然科學版), 2020, 39(4):293
    [25] Chen Z, Qian J Z, Luo S H, et al. Experimental study of friction factor for groundwater flow in a single rough fracture. J Hydrodyn Ser B, 2009, 21(6): 820 doi: 10.1016/S1001-6058(08)60218-8
    [26] Rong G, Yang J, Cheng L, et al. A Forchheimer equation-based flow model for fluid flow through rock fracture during shear. Rock Mech Rock Eng, 2018, 51(9): 2777 doi: 10.1007/s00603-018-1497-y
    [27] Yin Q, Ma G W, Jing H W, et al. Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study. J Hydrol, 2017, 555
  • 加載中
圖(14) / 表(7)
計量
  • 文章訪問數:  1946
  • HTML全文瀏覽量:  720
  • PDF下載量:  105
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-26
  • 網絡出版日期:  2020-07-17
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回