<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于熔渣結構的多元渣系黏度模型

唐續龍 張梅 郭敏 王習東

唐續龍, 張梅, 郭敏, 王習東. 基于熔渣結構的多元渣系黏度模型[J]. 工程科學學報, 2020, 42(9): 1149-1156. doi: 10.13374/j.issn2095-9389.2019.09.27.001
引用本文: 唐續龍, 張梅, 郭敏, 王習東. 基于熔渣結構的多元渣系黏度模型[J]. 工程科學學報, 2020, 42(9): 1149-1156. doi: 10.13374/j.issn2095-9389.2019.09.27.001
TANG Xu-long, ZHANG Mei, GUO Min, WANG Xi-dong. Structurally-based viscosity model for multicomponent slag systems[J]. Chinese Journal of Engineering, 2020, 42(9): 1149-1156. doi: 10.13374/j.issn2095-9389.2019.09.27.001
Citation: TANG Xu-long, ZHANG Mei, GUO Min, WANG Xi-dong. Structurally-based viscosity model for multicomponent slag systems[J]. Chinese Journal of Engineering, 2020, 42(9): 1149-1156. doi: 10.13374/j.issn2095-9389.2019.09.27.001

基于熔渣結構的多元渣系黏度模型

doi: 10.13374/j.issn2095-9389.2019.09.27.001
基金項目: 國家自然科學基金資助項目(51972019);山西聯合重點基金資助項目(U1810205)
詳細信息
    通訊作者:

    E–mail:zhangmei@ustb.edu.cn

  • 中圖分類號: TF02

Structurally-based viscosity model for multicomponent slag systems

More Information
  • 摘要: 黏度是冶金熔渣的基本物理性質,其大小直接影響到反應速率、熔渣分離效果等冶煉過程。通過深入探索熔渣黏度與其結構的關系,在分析熔渣黏度與其(NBO/T)比值(即單個聚合物粒子所擁有的非橋氧數量)相互關系的基礎上,本文提出基于(NBO/T)比值的多元熔渣黏度計算模型。首先建立SiO2–∑MxO簡單渣系的黏度計算模型,通過擬合純氧化物和SiO2–MxO二元渣系的黏度數據得到模型參數,擬合平均誤差在9%~18.5%之間;隨后將該模型擴展至SiO2–Al2O3–∑MxO多元渣系的黏度計算,針對Al2O3在熔渣中同時表現出酸性氧化物和堿性氧化物的特點,在計算SiO2–Al2O3–MxO三元渣系黏度時,將其中的Al2O3拆分為酸性物質和堿性物質來計算(NBO/T)比值和黏度活化能。在SiO2–MxO二元系模型參數的基礎上,通過擬合SiO2–Al2O3–MxO三元渣系的黏度數據得到含Al2O3渣系的模型參數,擬合平均誤差在10%~25%之間。利用該模型計算了SiO2–Al2O3–CaO–MgO–FeO–Na2O–K2O–Li2O–BaO–SrO–MnO多元復雜渣系及其子體系的黏度值,計算平均誤差在25%以內,取得了較好的預報效果。本模型基于熔渣結構理論,并借鑒了經驗模型的數據處理方式,在預報效果和適用范圍上都優于傳統經驗模型,在計算方式上比結構模型要簡單。

     

  • 圖  1  SiO2–MxO二元系黏度與(NBO/T)比值的關系。(a) SiO2–CaO[9-11];(b) SiO2–MgO[12];(c) SiO2–MnO[10,13-14];(d) SiO2–FeO[10,15-16];(e) SiO2–K2O[12-17];(f) SiO2–Na2O[11-12]

    Figure  1.  Relationship between the viscosity and (NBO/T) ratio of SiO2–MxO binary system: (a) SiO2–CaO[9-11];(b) SiO2–MgO[12];(c) SiO2–MnO[10,13-14];(d) SiO2–FeO[10,15-16];(e) SiO2–K2O[12-17];(f) SiO2–Na2O[11-12]

    圖  2  SiO2–MxO二元系黏度活化能與(NBO/T)比值的關系。(a) SiO2–CaO[9-11];(b) SiO2–MgO[9-10];(c) SiO2–MnO[10,14];(d) SiO2–FeO[16];(e) SiO2–K2O[12,17];(f) SiO2–Na2O[11,20]

    Figure  2.  Relationship between the viscosity activation energy and (NBO/T) ratio of SiO2–MxO binary system: (a) SiO2–CaO[9-11];(b) SiO2–MgO[9-10];(c) SiO2–MnO[10,14];(d) SiO2–FeO[16];(e) SiO2–K2O[12,17];(f) SiO2–Na2O[11,20]

    圖  3  黏度模型的預報效果比較。(a) SiO2–MxO二元系;(b) SiO2–Al2O3–MxO三元系;(c) SiO2–CaO/MgO–MxO三元系;(c) SiO2–Al2O3–∑MxO復雜體系

    Figure  3.  Comparison of prediction effects of the viscosity model: (a) SiO2–MxO binaries slag; (b) SiO2–Al2O3–MxO ternary slag; (c) SiO2–CaO/MgO–MxO ternary slag; (c) SiO2–Al2O3–∑MxO multi–complex slag

    表  1  純MxO熔渣的參數

    Table  1.   Parameters of pure MxO slag

    MxOμ/(mPa·s) EMi/(kJ·mol?1)mi
    1400 ℃1450 ℃1500 ℃1530 ℃
    CaO23.8220.6717.8316.1510.7030.582
    MgO39.6634.0128.9626.0311.4580.526
    K2O0.470.450.430.424.3650.543
    Na2O0.830.790.750.724.9870.561
    Li2O3.242.962.692.527.530.58
    MnO7.356.816.235.797.1850.617
    FeO3.593.433.073.026.0860.626
    SrOa)20.3290.568
    BaOa)13.3030.506
    a):The m of SrO and BaO are obtained by fitting the viscosities data of corresponding SiO2-MxO binary slag.
    下載: 導出CSV

    表  2  SiO2–MxO二元渣系參數

    Table  2.   Parameters of SiO2–MxO binary slag

    Systemmass fraction of SiO2/%Temperature range/℃KiqiFitting errors/%
    SiO2–CaO[9-11,22-24]40–401500–22003.180.67211.2
    SiO2–MgO[10,12]45–701600–22002.6331.4949.9
    SiO2–FeO[15-16]25–401250–14002.3030.8058.1
    SiO2–MnO[13,22]20–401450–15502.3330.85914.1
    SiO2–K2O[12,17]40–801300–17002.5560.27218.5
    SiO2–Na2O[11-12,20]40–851350–17002.9010.24711.5
    SiO2–Li2O[12,17]60–801250–17004.2290.6839.3
    SiO2–SrO[10,12,17]35–701500–180019.1562.01610.0
    SiO2–BaO[12,17]25–701500–18006.4030.94316.6
    下載: 導出CSV

    表  3  SiO2–Al2O3–MxO渣系參數

    Table  3.   Parameters of SiO2–Al2O3–MxO slag

    System$R_{{{\rm{M}}_x}{\rm{O1}}} $$R_{{{\rm{M}}_x}{\rm{O2}}} $$R_{{{\rm{M}}_x}{\rm{O}}} $Fitting errors/%
    SiO2–Al2O3–Li2O[17]3.92?5.7211.30711.9
    SiO2–Al2O3–Na2O[20,26-27]2.13?0.95410.90424.4
    SiO2–Al2O3–K2O[17]?3.66614.831?0.24719.1
    SiO2–Al2O3–SrO[17]4.519?8.034.88511.9
    SiO2–Al2O3–MgO[17,29,28-29]4.792?9.1762.01119.9
    SiO2–Al2O3–CaO[21,23-24,30-32]3.528?4.812.26819.6
    SiO2–Al2O3–BaO[17]?22.60732.833?28.3316.2
    SiO2–Al2O3–MnO[22]3.233?4.8113.51910.3
    SiO2–Al2O3–FeO*[21,32]8.671?29.49?6.37619.8
    *:Utilize the viscosity values of SiO2–Al2O3–CaO–FeO slag system.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mao Y W. Metallurgical Melt. Beijing: Metallurgical Industry Press, 1994

    毛裕文. 冶金熔體. 北京: 冶金工業出版社, 1994
    [2] Shankar A, Gornerup M, Lahiri A K, et al. Estimation of viscosity for blast furnace type slags. <italic>Ironmaking Steelmaking</italic>, 2007, 34(6): 477 doi: 10.1179/174328107X17467
    [3] Kondratiev A, Hayes P C, Jak E. Development of a quasi–chemical viscosity model for fully liquid slags in the Al<sub>2</sub>O<sub>3</sub>–CaO–'FeO'–MgO–SiO<sub>2</sub> system. The experimental data for the 'FeO'–MgO–SiO<sub>2</sub>, CaO–'FeO'–MgO–SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>–CaO–'FeO'–MgO–SiO<sub>2</sub> systems at iron saturation. <italic>ISIJ Int</italic>, 2008, 48(1): 7 doi: 10.2355/isijinternational.48.7
    [4] Urbain G. Viscosity of silica, alumina, and Na and K oxides: Measurements and estimate. <italic>Revue Internationale des Hautes Temperatures et des Refractaires</italic>, 1985, 22(1): 39
    [5] Gaye H, Riboud P V, Welfringer J. Use of a slag model to describe slag–metal reactions and precipitation of inclusions. <italic>Ironmaking Steelmaking</italic>, 1988, 15(6): 319
    [6] Forsbacka L, Holappa L, Iida T, et al. Experimental study of viscosities of selected CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> slags and application of the Iida model. <italic>Scand J Metall</italic>, 2003, 32(5): 273 doi: 10.1034/j.1600-0692.2003.00652.x
    [7] Tang X L, Guo M, Wang X D, et al. Estimation model of viscosity based on modified (NBO/T) ratio. <italic>J Univ Sci Technol Beijing</italic>, 2010, 32(12): 1542

    唐續龍, 郭敏, 王習東, 等. 基于修正的(NBO/T)比值的黏度模型. 北京科技大學學報, 2010, 32(12):1542
    [8] Mills K C. Influence of structure on the physico–chemical properties of slags. <italic>ISIJ Int</italic>, 1993, 33(1): 148 doi: 10.2355/isijinternational.33.148
    [9] Bockris J O M, Lowe D C. Viscosity and the structure of molten silicates. Proc Royal Soc London. <italic>Ser AMath Phys Sci</italic>, 1954, 226(1167): 423
    [10] Urbain G, Bottinga Y, Richet P. Viscosity of liquid silica, silicates and alumino–silicates. <italic>Geochim Cosmochim Acta</italic>, 1982, 46(6): 1061 doi: 10.1016/0016-7037(82)90059-X
    [11] Mizoguchi K, Yamane M, Suginohara Y. Viscosity measurements of the molten MeO (Me = Ca, Mg, Na)–SiO<sub>2</sub>–Ga<sub>2</sub>O<sub>3</sub> silicate systems. <italic>J Jpn Inst Met</italic>, 1986, 50(1): 76 doi: 10.2320/jinstmet1952.50.1_76
    [12] Bockris J O M, Mackenzie J D, Kitchener J A. Viscous flow in silica and binary liquid silicates. <italic>Trans Faraday Soc</italic>, 1955, 51: 1734 doi: 10.1039/tf9555101734
    [13] Ji F Z, Du S C, Seetharaman S. Experimental studies of the viscosities in Fe<sub>n</sub>O–MgO–SiO<sub>2</sub> and Fe<sub>n</sub>O–MnO–SiO<sub>2</sub> slags. <italic>Ironmaking Steelmaking</italic>, 1998, 25(4): 309
    [14] Segers L, Fontana A, Winand R. Viscosities of melts of silicates of the ternary system CaO–SiO<sub>2</sub>–MnO. <italic>Electrochim Acta</italic>, 1979, 24(2): 213 doi: 10.1016/0013-4686(79)80027-4
    [15] Shiraishi Y, Ikeda K, Tamura A, et al. On the viscosity and density of the molten FeO–SiO<sub>2</sub> system. <italic>Trans Jpn Inst Met</italic>, 1978, 19(5): 264 doi: 10.2320/matertrans1960.19.264
    [16] Kucharski M, Stubina N M, Toguri J M. Viscosity measurements of molten Fe–O–SiO<sub>2</sub>, Fe–O–CaO–SiO<sub>2</sub>, and Fe–O–MgO–SiO<sub>2</sub> slags. <italic>Can Metall Q</italic>, 1989, 28(1): 7 doi: 10.1179/cmq.1989.28.1.7
    [17] Mizoguchi K, Okamoto K, Suginohara Y. Oxygen coordination of Al<sup>3+</sup> ion in several silicate melts studied by viscosity measurements. <italic>J Jpn Inst Met</italic>, 1982, 46(11): 1055 doi: 10.2320/jinstmet1952.46.11_1055

    溝口數一, 岡本一徳, 杉之原幸夫. 粘度測定による溶融アルミノ珪酸塩中のA1<sup>3+</sup>イオンの酸素配位數について. 日本金屬學會誌, 1982, 46(11):1055 doi: 10.2320/jinstmet1952.46.11_1055
    [18] Ray H S, Pal S. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. <italic>Ironmaking Steelmaking</italic>, 2004, 31(2): 125 doi: 10.1179/030192304225012097
    [19] Kondratiev A, Jak E. Review of experimental data and modeling of the viscosities of fully liquid slags in the Al<sub>2</sub>O<sub>3</sub>–CaO–'FeO'–SiO<sub>2</sub> system. <italic>Metall Mater Trans B</italic>:<italic>Process Metall Mater Proc Sci</italic>, 2001, 32(6): 1015 doi: 10.1007/s11663-001-0090-y
    [20] Kou T, Mizoguchi K, Suginohara Y. The effect of Al<sub>2</sub>O<sub>3</sub> on the viscosity of silicate melts. <italic>J Jpn Inst Met</italic>, 1978, 42(8): 775 doi: 10.2320/jinstmet1952.42.8_775

    神隆浩, 溝口數一, 杉之原幸夫. 珪酸塩の粘度におよぼすAl<sub>2</sub>O<sub>3</sub>の影響. 日本金屬學會誌, 1978, 42(8):775 doi: 10.2320/jinstmet1952.42.8_775
    [21] Allibert M, Gaye H, Geiseler J, et al. Slag Atlas. 2nd Ed. Düsseldorf: Verlag Stahleisen GmbH, 1995
    [22] Kawahara M, Mizoguchi K, Suginohara Y. Viscosity and infrared spectra of calcium oxide-silicon dioxide-manganese oxide and manganese oxide-silicon dioxide-aluminum oxide melts. <italic>Bull Kyushu Inst Technol </italic>(<italic>Sci Technol</italic>)<italic></italic>, 1981, 43: 53
    [23] Scarfe C M, Cronin D J, Wenzel J T, et al. Viscosity–temperature relationships at 1 atm in the system diopside–anorthite. <italic>Am Mineral</italic>, 1983, 68: 1083
    [24] Yasukouchi T, Nakashima K, Mori K. Viscosity of ternary CaO–SiO<sub>2</sub>–M<italic><sub>x</sub></italic>(F, O)<italic><sub>y</sub></italic> and CaO–Al<sub>2</sub>O<sub>3</sub>–Fe<sub>2</sub>O<sub>3</sub> melts. <italic>Tetsu-to-Hagane</italic>, 1999, 85(8): 571 doi: 10.2355/tetsutohagane1955.85.8_571
    [25] Mills K C, Chapman L, Fox A B, et al. 'Round robin' project on the estimation of slag viscosities. <italic>Scand J Metall</italic>, 2001, 30(6): 396 doi: 10.1034/j.1600-0692.2001.300608.x
    [26] Toplis M J, Dingwell D B, Hess K U, et al. Viscosity, fragility, and configurational entropy of melts along the join SiO<sub>2</sub>–NaAlSiO<sub>4</sub>. <italic>Am Mineral</italic>, 1997, 82(9-10): 979 doi: 10.2138/am-1997-9-1014
    [27] Toplis M J, Dingwell D B, Lenci T. Peraluminous viscosity maxima in Na<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> liquids: the role of triclusters in tectosilicate melts. <italic>Geochim Cosmochim Acta</italic>, 1997, 61(13): 2605 doi: 10.1016/S0016-7037(97)00126-9
    [28] Machin J S, Yee T B. Viscosity studies of system CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>: IV, 60 and 65% SiO<sub>2</sub>. <italic>J Am Ceram Soc</italic>, 1954, 37(4): 177 doi: 10.1111/j.1151-2916.1954.tb14019.x
    [29] Machin J S, Yee T B, Hanna D L. Viscosity studies of system CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2:</sub> Ⅲ, 35, 45, and 50% SiO<sub>2</sub>. <italic>J Am Ceram Soc</italic>, 1952, 35(12): 322 doi: 10.1111/j.1151-2916.1952.tb13057.x
    [30] Kita Y, Handa A, Iida T. Measurements and calculations of viscosities of blast furnace type slags. <italic>J High Temp Soc</italic>, 2001, 27(4): 144
    [31] Machin J S, Yee T B. Viscosity studies of system CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>: Ⅱ, CaO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>. <italic>J Am Ceram Soc</italic>, 1948, 31(7): 200 doi: 10.1111/j.1151-2916.1948.tb14290.x
    [32] Scarfe C M, Cronin D J. Viscosity–temperature relationships of melts at 1 atm in the system diopside–albite. <italic>Am Mineral</italic>, 1986, 71: 767
    [33] Tang X L, Ma M S. A description of slag viscosity model and the prediction capability. <italic>China Nonferrous Metall</italic>, 2015, 44(1): 18

    唐續龍, 馬明生. 熔渣黏度模型介紹及其預報效果比較. 中國有色冶金, 2015, 44(1):18
  • 加載中
圖(3) / 表(3)
計量
  • 文章訪問數:  1556
  • HTML全文瀏覽量:  918
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-27
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回