<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

確定性多變量自校正控制的穩定性、收斂性和魯棒性

趙櫟 張維存 楚天廣

趙櫟, 張維存, 楚天廣. 確定性多變量自校正控制的穩定性、收斂性和魯棒性[J]. 工程科學學報, 2019, 41(9): 1215-1221. doi: 10.13374/j.issn2095-9389.2019.09.014
引用本文: 趙櫟, 張維存, 楚天廣. 確定性多變量自校正控制的穩定性、收斂性和魯棒性[J]. 工程科學學報, 2019, 41(9): 1215-1221. doi: 10.13374/j.issn2095-9389.2019.09.014
ZHAO Li, ZHANG Wei-cun, CHU Tian-guang. Stability, convergence, and robustness of deterministic multivariable self-tuning control[J]. Chinese Journal of Engineering, 2019, 41(9): 1215-1221. doi: 10.13374/j.issn2095-9389.2019.09.014
Citation: ZHAO Li, ZHANG Wei-cun, CHU Tian-guang. Stability, convergence, and robustness of deterministic multivariable self-tuning control[J]. Chinese Journal of Engineering, 2019, 41(9): 1215-1221. doi: 10.13374/j.issn2095-9389.2019.09.014

確定性多變量自校正控制的穩定性、收斂性和魯棒性

doi: 10.13374/j.issn2095-9389.2019.09.014
基金項目: 

國家自然科學基金資助項目 61520106010

國家自然科學基金資助項目 61741302

詳細信息
    通訊作者:

    張維存, E-mail: weicunzhang@263.net

  • 中圖分類號: TP273

Stability, convergence, and robustness of deterministic multivariable self-tuning control

More Information
  • 摘要: 本文用基于傳遞函數概念的虛擬等價系統方法統一分析各種類型的多變量確定性自校正控制系統的穩定性、收斂性和魯棒性,分別針對參數估計收斂到真值、參數估計收斂到非真值以及參數估計不收斂的3種情況給出若干定理、推論和注釋.在各個判據的基礎上,進一步深化對確定性多變量自校正控制系統的理解.所得結論說明:參數估計的收斂性不是確定性多變量自校正控制系統穩定和收斂的必要條件;系統自身的反饋信息對確定性多變量自校正控制是充分的,即外加激勵信號不是必要的.

     

  • 圖  1  確定性自校正控制系統

    Figure  1.  Deterministic self-tuning control system

    圖  2  確定性自校正控制的虛擬等價系統

    Figure  2.  VES of deterministic self-tuning control system

    圖  3  自校正控制系統對應的定常系統

    Figure  3.  Non-adaptive control system for deterministic self-tuning control system

    圖  4  參數收斂到真值時的分解子系統2

    Figure  4.  Decomposed subsystem 2 of Fig. 2

    圖  5  參數估計收斂到非真值時的虛擬等價系統

    Figure  5.  VES Ⅱ for self-tuning control system

    圖  6  參數收斂到非真值時的分解系統1

    Figure  6.  Decomposed subsystem 1 of VES Ⅱ

    圖  7  參數收斂到非真值時的分解系統2

    Figure  7.  Decomposed subsystem 2 of VES Ⅱ

    圖  8  參數收斂到非真值時的分解系統3

    Figure  8.  Decomposed subsystem 3 of VES Ⅱ

    圖  9  參數估計不收斂時的虛擬等價系統

    Figure  9.  VES of self-tuning control system

    圖  10  參數估計不收斂時的虛擬等價系統

    Figure  10.  Another VES of self-tuning control system

    圖  11  參數估計不收斂時的分解子系統1

    Figure  11.  Decomposed subsystem 1 of Fig. 10

    圖  12  參數估計不收斂時的分解子系統2

    Figure  12.  Decomposed subsystem 2 of Fig. 10

    圖  13  參數估計不收斂時的分解子系統3

    Figure  13.  Decomposed subsystem 3 of Fig. 10

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang W C. Research on Robust Adaptive Control Theory and Its Applications [Dissertation]. Beijing: Tsinghua University, 1993

    張維存. 魯棒自適應控制理論及應用研究[學位論文]. 北京: 清華大學, 1993
    [2] Fekri S, Athans M, Pascoal A. Issues, progress and new results in robust adaptive control. Int J Adapt Control Signal Process, 2006, 20(10): 519 doi: 10.1002/acs.912
    [3] Li Q Q. Adaptive Control System: Theory, Design, and Applications. Beijing: Science Press, 1990

    李清泉. 自適應控制系統理論、設計與應用. 北京: 科學出版社, 1990
    [4] Xie X M, Ding F. Adaptive Control System. Beijing: Tsinghua University Press, 2002

    謝新民, 丁鋒. 自適應控制系統. 北京: 清華大學出版社, 2002
    [5] Zhang W C. On the stability and convergence of self-tuning control-virtual equivalent system approach. Int J Control, 2010, 83(5): 879 doi: 10.1080/00207170903487421
    [6] Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control. Courier Corporation, 2014 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1164531
    [7] Lozano-Leal R, Goodwin G. A globally convergent adaptive pole placement algorithm without a persistency of excitation requirement. IEEE Trans Autom Control, 1985, 30(8): 795 doi: 10.1109/TAC.1985.1104036
    [8] Lozano-Leal R. Robust adaptive regulation without persistent excitation. IEEE Trans Autom Control, 1989, 34(12): 1260 doi: 10.1109/9.40771
    [9] Lozano R. Singularity-free adaptive pole-placement without resorting to persistency of excitation: detailed analysis for first order systems. Automatica, 1992, 28(1): 27 doi: 10.1016/0005-1098(92)90004-Y
    [10] Lozano R, Dion J M, Dugard L. Singularity-free adaptive pole placement using periodic controllers. IEEE Trans Autom Control, 1993, 38(1): 104 doi: 10.1109/9.186317
    [11] Lozano R, Zhao X H. Adaptive pole placement without excitation probing signals. IEEE Trans Autom Control, 1994, 39(1): 47 doi: 10.1109/9.273338
    [12] Xu L Z, Wang X H. Methods and Examples of Mathematical Analysis (Revised Edition). Beijing: Higher Education Press, 1983

    徐利治, 王興華. 數學分析的方法及例題選講(修訂版). 北京: 高等教育出版社, 1983
    [13] Caines P, Lafortune S. Adaptive control with recursive identification for stochastic linear systems. IEEE Trans Autom Control, 1984, 29(4): 312 doi: 10.1109/TAC.1984.1103520
    [14] Chen H F, Guo L. Asymptotically optimal adaptive control with consistent parameter estimates. SIAM J Control Optim, 1987, 25(3): 558 doi: 10.1137/0325031
    [15] ?str?m K J, Wittenmark B. Adaptive Control. Newyork: Courier Corporation, 2013
    [16] Hu S G. Functional Analysis. Beijing: Higher Education Press, 2007

    胡適耕. 泛函分析. 北京: 高等教育出版社, 2007
    [17] Prandini M, Campi M C. A new recursive identification algorithm for singularity free adaptive control. Syst Control Lett, 1998, 34(4): 177 doi: 10.1016/S0167-6911(98)00012-7
    [18] Prandini M, Bittanti S, Campi M C. A penalized identification criterion for securing controllability in adaptive control. J Math Syst Estim Control, 1998, 8(4): 1 http://www.ams.org/mathscinet-getitem?mr=1651285
    [19] Liberzon D, Morse A S. Basic problems in stability and design of switched systems. IEEE Control Syst Mag, 1999, 19(5): 59 doi: 10.1109/37.793443
    [20] Shorten R, Wirth F, Mason O, et al. Stability criteria for switched and hybrid systems. SIAM Rev, 2007, 49(4): 545 doi: 10.1137/05063516X
    [21] Feng C B, Shi W. Adaptive control. Beijing: Publishing House of Electronics Industry, 1986

    馮純伯, 史維. 自適應控制, 北京: 電子工業出版社, 1986
    [22] Zhang W C, Wei W. Virtual equivalent system theory for adaptive control and simulation verification. Sci Sin Inform, 2018, 48(7): 947 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201807014.htm

    張維存, 魏偉. 自適應控制的虛擬等價系統理論及仿真驗證. 中國科學: 信息科學, 2018, 48(7): 947 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201807014.htm
  • 加載中
圖(13)
計量
  • 文章訪問數:  1062
  • HTML全文瀏覽量:  373
  • PDF下載量:  30
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-03
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回