Key factors and developmental directions with regard to metal additive manufacturing
-
摘要: 金屬增材制造技術是一種短流程、近終形的新型材料成形技術.在金屬增材制造技術中, 設備是載體, 材料是關鍵, 工藝是基礎, 三者是影響金屬增材制造技術發展的關鍵因素.本文通過對具有代表性的金屬增材制造技術的特點進行總結, 分析了設備、材料和工藝之間的關系以及三者在金屬增材制造技術中的重要作用; 綜述了金屬增材制造設備的原料供給系統、成形系統和控制系統的研究現狀; 總結了金屬增材制造材料中鈦合金、鎳合金、鋁合金和鋼鐵材料的典型組織特點和力學性能; 論述了金屬增材制造工藝參數對殘余應力、孔洞、精度和組織的影響; 指出了目前金屬增材制造技術在設備方面存在設備成本高、產品成形尺寸受限、成形效率低等問題, 在材料方面存在生產成本高、適用性差等問題, 在工藝方面存在參數匹配困難、熱積累嚴重等問題; 從降低設備和材料成本、擴大產品成形尺寸范圍、提高產品精度和成形效率、拓展材料種類和適用范圍、減少工藝參數匹配難度、提升產品質量及綜合性能、開發金屬增材制造新技術方面展望了金屬增材制造技術的發展方向.Abstract: Metal additive manufacturing is a new type of material-forming technology characterized by its short process and near net shape. Equipment, material and process are critical factors which serve as the supporter, key, and foundation respectively in terms of the development of this technology. In this paper, the characteristics of the equipment, material, and process of the different representative technologies were summarized. The relations among metal additive manufacturing equipment, manufacturing material, and manufacturing process as well as their roles in the metal additive manufacturing technology were analyzed. The research status of the raw material supply system, forming system, and control system were reviewed. The typical microstructure and mechanical properties of metal additive manufacturing materials, such as titanium alloy, nickel alloy, aluminum alloy, and steel, were summarized. The effects of the manufacturing process parameters on residual stress, porosity, accuracy, and microstructure were discussed. Problems associated with the manufacturing equipment, such as high cost, limited forming size, and low forming efficiency were discussed along with the problems associated with the material, such as high production cost and poor applicability. Furthermore, problems associated with the metal additive manufacturing process, such as difficult matching of process parameters and severe thermal accumulation, were elaborated as well. Future developmental goals in metal additive manufacturing include: (a) reducing the cost of manufacturing equipment and material, (b) expanding the range of product forming size, (c) improving the product printing accuracy and forming efficiency, (d) expanding the types and application scope of metal additive manufacturing material, (e) reducing the difficulty in the matching of process parameters, (f) improving product quality and comprehensive performance, and (g) developing new types of metal additive manufacturing technologies.
-
圖 10 不同激光脈沖周期和基板移動速度下樣品二維垂直應力分布圖[65]. (a) 80 ms, 14.0 mm ·s-1; (b) 60 ms, 10.5 mm ·s-1; (c) 40 ms, 7.0 mm ·s-1
Figure 10. 2D vertical stress distribution diagram of samples at different laser pulse lengths and substrate moving speeds[65]: (a) 80 ms, 14.0 mm ·s-1; (b) 60 ms, 10.5 mm ·s-1; (c) 40 ms, 7.0 mm ·s-1
圖 12 不同噴射頻率下垂直柱外觀形貌及內部組織[95]. (a) 1 Hz金相組織; (b) 1 Hz掃描電鏡背散射; (c) 3 Hz金相組織; (d) 3 Hz掃描電鏡背散射; (e) 7 Hz金相組織; (f) 7 Hz掃描電鏡背散射
Figure 12. Profiles and microstructures of the columns with varied ejection frequencies[95]: (a) metallographic morphology for 1 Hz; (b) BSE image for 1 Hz; (c) metallographic morphology for 3 Hz; (d) BSE image for 3 Hz; (e) metallographic morphology for 7 Hz; (f) BSE image for 7 Hz
表 1 各金屬增材制造技術的設備、材料和工藝的特點
Table 1. Characteristics of equipment, material, and process for different metal additive manufacturing technologies
技術名稱 誕生年代 設備特點 材料特點 工藝特點 參考文獻 激光選區燒結 1986 熱源為激光器,激光功率和光斑直徑均較小,采用振鏡使激光束運動 高、低熔點混合的高形狀要求粉材,預先鋪設在基板上 通過熔化低熔點粉材粘合高熔點粉材,層厚及掃描間距較小,需通過復雜后處理提高產品致密度 [10-12] 微滴噴射 1993 熱源為電阻絲或感應線圈,噴嘴或基板做機械運動 材料無特殊形狀要求,熔化后以金屬熔體的形式供料 成形過程中熱源不熔化已沉積層,以微滴形式成形,層厚及掃描間距較小,需后續加工提高產品精度 [13-15] 激光選區熔化 1995 熱源為激光器,激光功率較大,光斑直徑較小,采用振鏡使光束運動 單一種類高形狀要求粉材,預先鋪設在基板上 金屬粉材先于已沉積層熔化,層厚及掃描間距較小,無需復雜后處理 [16-17] 激光工程化凈成形 1995 熱源為激光器,激光功率和光斑直徑大,激光器或基板做機械運動 一種或多種低形狀要求粉材,成形過程中輸送至成形區域 金屬粉材與已沉積層一起熔化,層厚及掃描間距大,需后續加工提高產品精度 [18-19] 金屬電弧增材制造 1998 熱源為電弧,能量輸入較高,焊槍或基板做機械運動 低形狀要求線材,成形過程中輸送至成形區域 金屬線材與已沉積層一起熔化,層厚及掃描間距大,需后續加工提高產品精度 [20] 電子束選區熔化 2000 熱源為電子束,功率及束斑直徑大,能量利用率高,采用偏轉線圈使電子束運動 單一種類低形狀要求粉材,預先鋪設在基板上 在高成形環境溫度下,金屬粉材先于已沉積層熔化,層厚及掃描間距較大,需后續加工提高產品精度 [21-22] 金屬熔融沉積 2002 熱源為電阻絲或感應線圈,噴嘴或基板做機械運動 低熔點高形狀要求線材,熔化后以半固態的形式供料 成形過程中熱源不熔化已沉積層,以連續的半固態形式成形,層厚及掃描間距較大,需復雜后處理提高產品精度和結合強度 [23-24] 電子束熔絲沉積 2003 熱源為電子束,功率及束斑直徑大,基板做機械運動 低形狀要求線材,成形過程中輸送至成形區域 金屬線材與已沉積層一起熔化,層厚及掃描間距大,需后續加工提高產品精度 [25-27] 表 2 不同金屬增材制造技術設備的典型參數及代表性制造單位[2-3, 31-37]
Table 2. Typical parameters and manufacturing units of equipment for different metal additive manufacturing technologies[2-3, 31-37]
設備名稱 氣氛要求 熱源參數 運動參數 成形尺寸(長×寬×高)/(mm×mm×mm) 成形效率/(cm3·h-1) 代表性制造單位 激光選區燒結 惰性氣體保護,氧體積分數≤0.01% CO2激光器,功率10~200 W 激光水平運動速度≤8 m·s-1 ≤450×450×500 ≤100 EOS 微滴噴射 真空/惰性氣體保護 電阻/感應加熱 基板水平機械運動速度≤10 cm·min-1,微滴沉積頻率≤10 Hz — ≤50 西北工業大學 激光選區熔化 惰性氣體保護,氧體積分數≤0.01% 一個或多個Yb-fiber激光器,功率50~1000 W,光斑直徑50~200 μm 激光水平運動速度≤15 m·s-1 ≤800×400×500 ≤100 Fraunhofer ILT,Concept Laser,SLM Solutions,鉑力特 激光工程化凈成形 惰性氣體保護,氧體積分數≤0.01% Yb-fiber/Nd-YAG/CO2激光器,功率0.5~10 kW,光斑直徑0.3~7 mm 激光器或基板做機械3~6軸運動,水平機械運動速度≤800 cm·min-1 ≤3000×3000×6000 ≤300 InssTek,Optomec 金屬電弧增材制造 惰性氣體保護 鎢極氬弧/熔化極氬弧/等離子弧,電流90~300 A 焊槍或基板水平機械運動速度≤100 cm·min-1 — ≤900 Cranfield University,哈爾濱工業大學 電子束選區熔化 真空環境,真空度≤10-2 Pa 電子束,功率1~7 kW,束斑直徑100~400 μm 電子束水平運動速度≤8000 m·s-1 ≤200×200×380 ≤200 Arcam AB 金屬熔融沉積 大氣環境 電阻加熱 基板水平機械運動速度≤60 cm·min-1 — — UTEP 電子束熔絲沉積 真空環境,真空度≤10-2 Pa 電子束,功率 < 45 kW,束斑直徑3~5 mm 基板運動,速度≤200 cm·min-1 ≤5791×1219×1219 ≤1000 Efesto 表 3 不同金屬增材制造技術的主要材料種類、材料形狀與質量要求以及材料典型制備方法
Table 3. Material type, material shape, material quality requirements, and typical material preparation methods for different metal additive manufacturing technologies
技術名稱 主要材料種類 材料形狀與質量要求 材料典型制備方法 參考文獻 激光選區燒結 Cu-SCuP、Ni-Sn、Fe-Sn、碳鋼-尼龍 球形粉材,球形度>0.8,氧體積分數 < 0.08%,流動性(流過50 g粉末所需時間)>10 s,平均粒徑15~150 μm 氣霧化法制粉,等離子旋轉電極霧化法制粉 [60-62] 微滴噴射 錫合金、鋁合金 原料形狀無特殊要求 — [14, 63] 激光選區熔化 Ti-6Al-4V、AlSi10Mg、316L不銹鋼、Inconel 718、CoCrMo 球形粉材,球形度>0.7,氧體積分數 < 0.08%,流動性>10 s,平均粒徑15~53 μm 氣霧化法制粉,等離子旋轉電極霧化法制粉,水霧化制粉 [2, 7, 64] 激光工程化凈成形 Ti-6Al-4V、Inconel 718、316L不銹鋼 球形粉材/線材,粉材平均粒徑50~200 μm,線材平均直徑0.4~2 mm — [65-68] 金屬電弧增材制造 Ti-6Al-4V、鋁合金、316L不銹鋼 線材,平均直徑1~4 mm — [69-71] 電子束選區熔化 Ti-Al、Ti-6Al-4V、316L不銹鋼、Cu 球形粉材,氧體積分數 < 0.08%,平均粒徑30~106 μm 氣霧化法制粉,等離子旋轉電極霧化法制粉,氫化-脫氫法制粉 [72-74] 金屬熔融沉積 錫合金 線材,直徑1.75 mm±0.02 mm — [75] 電子束熔絲沉積 鈦合金、316L不銹鋼 線材,平均直徑0.8~1.2 mm — [76] 表 4 不同技術制備的Ti-6Al-4V的典型性能對比
Table 4. Comparison of typical mechanical properties of Ti-6Al-4V fabricated by different technologies
表 5 不同技術制備的Inconel 718的典型性能對比
Table 5. Comparison of typical mechanical properties of Inconel 718 fabricated by different technologies
表 6 不同技術制備的316L不銹鋼的典型性能對比
Table 6. Comparison of typical mechanical properties of 316L stainless steel fabricated by different technologies
表 7 不同金屬增材制造技術的典型工藝參數
Table 7. Typical process parameters for different metal additive manufacturing technologies
技術名稱 冷卻速度/(K·s-1) 層厚/mm 掃描間距/mm 表面粗糙度/μm 參考文獻 激光選區燒結 — 0.02~0.25 0.05~0.5 10~60 [104-105] 微滴噴射 10~103 0.1~1 0.15~1 15~100 [14, 46] 激光選區熔化 103~108 0.02~0.15 0.05~0.2 10~50 [106-108] 激光工程化凈成形 < 104 0.1~1.5 0.5~2 60~150 [2, 31] 金屬電弧增材制造 — 0.2~2.5 0.5~3 100~500 [109-110] 電子束選區熔化 103~104 0.1~0.5 0.1~1 25~80 [111-112] 金屬熔融沉積 — 0.5~1 1~1.5 — [24] 電子束熔絲沉積 20~500 1~3 2~5 — [113] www.77susu.com -
參考文獻
[1] Mohan Pandey P, Venkata Reddy N, Dhande S G. Slicing procedures in layered manufacturing: a review. Rapid Prototyping J, 2003, 9(5): 274 doi: 10.1108/13552540310502185 [2] Qi L H, Chao Y P, Luo J, et al. A novel selection method of scanning step for fabricating metal components based on micro-droplet deposition manufacture. Int J Mach Tools Manuf, 2012, 56: 50 doi: 10.1016/j.ijmachtools.2011.12.002 [3] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev, 2012, 57(3): 133 doi: 10.1179/1743280411Y.0000000014 [4] Frazier W E. Metal additive manufacturing: a review. J Mater Eng Perform, 2014, 23(6): 1917 doi: 10.1007/s11665-014-0958-z [5] Pinkerton A J. Lasers in additive manufacturing. Opt Laser Technol, 2016, 78: 25 doi: 10.1016/j.optlastec.2015.09.025 [6] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf, 2006, 46(12-13): 1459 doi: 10.1016/j.ijmachtools.2005.09.005 [7] Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci, 2018, 141: 207 doi: 10.1016/j.commatsci.2017.09.018 [8] Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev, 2016, 61(5): 315 doi: 10.1080/09506608.2015.1116649 [9] Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res, 2016, 34(3): 369 doi: 10.1002/jor.23075 [10] Deckard C R. Method and Apparatus for Producing Parts by Selective Sintering: US Patent, US005316580A. 1994-05-31 [11] Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J, 2005, 11(1): 26 doi: 10.1108/13552540510573365 [12] Kruth J P, Wang X, Laoui T, et al. Lasers and materials in selective laser sintering. Assembly Autom, 2003, 23(4): 357 doi: 10.1108/01445150310698652 [13] Orme M. A novel technique of rapid solidification net-form materials synthesis. J Mater Eng Perform, 1993, 2(3): 399 doi: 10.1007/BF02648828 [14] Fang M, Chandra S, Park C B. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping J, 2008, 14(1): 44 doi: 10.1108/13552540810841553 [15] Liu Q B, Orme M. High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol, 2001, 115(3): 271 doi: 10.1016/S0924-0136(01)00740-3 [16] Meiners W, Wissenbach K D, Gasser A D. Shaped Body especially Prototype or Replacement Part Production: DE Patent, DE19649865C1. 1998-02-12 [17] Sato Y, Tsukamoto M, Yamashita Y. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting. Appl Phys B, 2015, 119(3): 545 doi: 10.1007/s00340-015-6059-3 [18] Jeantette F P, Keicher D M, Romero J A, et al. Method and System for Producing Complex-shape Objects: US Patent, 6046426. 2000-04-04 [19] Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4 [20] Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding. Proc Instn Mech Eng Part B J Eng Manuf, 1998, 212(3): 175 doi: 10.1243/0954405981515590 [21] Andersson L E, Larsson M. Device and Arrangement for Producing A Three-dimensional Object: US Patent, 7537722B2. 2009-05-26 [22] Z?h M F, Lutzmann S. Modelling and simulation of electron beam melting. Prod Eng, 2010, 4(1): 15 doi: 10.1007/s11740-009-0197-6 [23] Wu G H, Langrana N A, Sadanji R, et al. Solid freeform fabrication of metal components using fused deposition of metals. Mater Des, 2002, 23(1): 97 doi: 10.1016/S0261-3069(01)00079-6 [24] Mireles J, Espalin D, Roberson D, et al. Fused deposition modeling of metals//Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2012: 836 http://www.researchgate.net/publication/289208001_Fused_deposition_modeling_of_metals [25] Taminger K M B, Hafley Robert A. Characterization of 2219 aluminum produced by electron beam freeform fabrication//Proceeding of the 13th Solid Freeform Fabrication Symposium. Austin, 2002: 482 [26] Chen T, Pang S Y, Tang Q, et al. Evaporation ripped metallurgical pore in electron beam freeform fabrication of Ti-6-Al-4-V. Mater Manuf Processes, 2016, 31(15): 1995 doi: 10.1080/10426914.2015.1127948 [27] Yan W Z, Yue Z F, Zhang J Z. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication. Mater Des, 2016, 89: 1205 doi: 10.1016/j.matdes.2015.10.094 [28] Yang Y Q, Ye Z H, Wang D, et al. Feasibility analysis of domestic industrialization of 3D printing equipment. Adv Mater Ind, 2013(8): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201308005.htm楊永強, 葉梓恒, 王迪, 等. 3D打印設備國內產業化可行性分析. 新材料產業, 2013(8): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201308005.htm [29] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm王華明. 高性能大型金屬構件激光增材制造: 若干材料基礎問題. 航空學報, 2014, 35(10): 2690 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm [30] Huang W D. Research progress of 3D printing technology materials. J New Industrialization, 2016, 6(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201603009.htm黃衛東. 材料3D打印技術的研究進展. 新型工業化, 2016, 6(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201603009.htm [31] Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 doi: 10.1016/j.pmatsci.2016.08.001 [32] Karunakaran K P, Bernard A, Suryakumar S, et al. Rapid manufacturing of metallic objects. Rapid Prototyping J, 2012, 18(4): 264 doi: 10.1108/13552541211231644 [33] Seifi M, Salem A, Beuth J, et al. Overview of materials qualification needs for metal additive manufacturing. JOM, 2016, 68(3): 747 doi: 10.1007/s11837-015-1810-0 [34] Xiong J, Zhang G J. Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol, 2014, 214(4): 962 doi: 10.1016/j.jmatprotec.2013.11.014 [35] Xu L F. Foundational Research on Uniform Droplets Spraying Micro-fabrication Technology [Dissertation]. Xi'an: Northwestern Polytechnical University, 2005徐林峰. 均勻液滴噴射微制造技術基礎研究[學位論文]. 西安: 西北工業大學, 2005 [36] Xiong J. Forming Characteristics in Multi-layer Single-head GMA Additive Manufacturing and Control for Deposition Dimension [Dissertation]. Harbin: Harbin Institute of Technology, 2014熊俊. 多層單道GMA增材制造成形特性及熔敷尺寸控制[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014 [37] He L. The Study on Semi-solid Metal Extrusion Deposition Molding Technology Based on Five-axis Linkage CNC Workbench [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2015何龍. 基于五軸聯動的半固態金屬擠出沉積成型技術研究[學位論文]. 武漢: 華中科技大學, 2015 [38] Wang B. Novel Equipment Development and Process Research on Selective Laser Melting[Dissertation]. Changsha: Hunan University, 2016王兵. 新型選區激光熔化設備開發與工藝研究[學位論文]. 長沙: 湖南大學, 2016 [39] Chen G X, Zeng X Y. Design on SLM powder coating device. Manuf Technol Mach Tool, 2010(3): 57 doi: 10.3969/j.issn.1005-2402.2010.03.018陳光霞, 曾曉雁. 選擇性激光熔化激光快速成型鋪粉裝置設計. 制造技術與機床, 2010(3): 57 doi: 10.3969/j.issn.1005-2402.2010.03.018 [40] Cui Y Y. Study on the Design of Powder Coating System of Selective Laser Melting[Dissertation]. Nanjing: Nanjing University of Science and Technology, 2016崔祎赟. 激光選區熔化鋪粉系統設計研究[學位論文]. 南京: 南京理工大學, 2016 [41] Mahesh M, Wong Y S, Fuh J Y H, et al. A six-sigma approach for benchmarking of RP&M processes. Int J Adv Manuf Technol, 2006, 31(3-4): 374 doi: 10.1007/s00170-005-0201-z [42] Wen S Y, Shin Y C, Murthy J Y, et al. Modeling of coaxial powder flow for the laser direct deposition process. Int J Heat Mass Transfer, 2009, 52(25-26): 5867 doi: 10.1016/j.ijheatmasstransfer.2009.07.018 [43] Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J Mater Process Technol, 2010, 210(15): 2125 doi: 10.1016/j.jmatprotec.2010.07.036 [44] Tian F J, Han H. Design of coaxial powder feeding system for FGM laser rapid shaping. Trans Shenyang Ligong Univ, 2008, 27(6): 48 doi: 10.3969/j.issn.1003-1251.2008.06.012田鳳杰, 韓輝. 功能梯度材料激光快速成形同軸送粉系統設計. 沈陽理工大學學報, 2008, 27(6): 48 doi: 10.3969/j.issn.1003-1251.2008.06.012 [45] Tseng A A, Lee M H, Zhao B. Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol-Trans ASME, 2001, 123(1): 74 doi: 10.1115/1.1286187 [46] Zhong S Y. Research on Uniform Metal Droplet Generation and Surface Topography Control in Metal Micro-droplet Deposition Manufacture[Dissertation]. Xi'an: Northwestern Polytechnical University, 2016鐘宋義. 均勻金屬微滴氣動按需噴射行為及表面形貌控制研究[學位論文]. 西安: 西北工業大學, 2016 [47] Zhong S Y, Qi L H, Luo J, et al. Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J Mater Process Technol, 2014, 214(12): 3089 doi: 10.1016/j.jmatprotec.2014.07.012 [48] Mumtaz K A, Hopkinson N. Selective laser melting of thin wall parts using pulse shaping. J Mater Process Technol, 2010, 210(2): 279 doi: 10.1016/j.jmatprotec.2009.09.011 [49] Baek G Y, Lee K Y, Park S H, et al. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness. Met Mater Int, 2017, 23(6): 1204 doi: 10.1007/s12540-017-7049-2 [50] Yan H F. Key Techniques Research on SLM 3D Printing Equipment for Dental Application [Dissertation]. Beijing: Beijing University of Technology, 2016晏恒峰. 牙科激光選區熔化3D打印設備關鍵技術研究[學位論文]. 北京: 北京工業大學, 2016 [51] Schleifenbaum H, Meiners W, Wissenbach K, et al. Individualized production by means of high power selective laser melting. CIRP J Manuf Sci Technol, 2010, 2(3): 161 doi: 10.1016/j.cirpj.2010.03.005 [52] Hofman J T, Pathiraj B, Van Dijk J, et al. A camera based feedback control strategy for the laser cladding process. J Mater Process Technol, 2012, 212(11): 2455 doi: 10.1016/j.jmatprotec.2012.06.027 [53] Hu D M, Kovacevic R. Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf, 2003, 43(1): 51 doi: 10.1016/S0890-6955(02)00163-3 [54] Craeghs T, Clijsters S, Yasa E, et al. Online quality control of selective laser melting//Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2011: 212 http://www.researchgate.net/publication/268293509_Online_quality_control_of_selective_laser_melting/download [55] Herali? A, Christiansson A K, Ottosson M, et al. Increased stability in laser metal wire deposition through feedback from optical measurements. Opt Lasers Eng, 2010, 48(4): 478 doi: 10.1016/j.optlaseng.2009.08.012 [56] Bi G J, Schürmann B, Gasser A, et al. Development and qualification of a novel laser-cladding head with integrated sensors. Int J Mach Tools Manuf, 2007, 47(3-4): 555 doi: 10.1016/j.ijmachtools.2006.05.010 [57] Hand D P, Fox M D T, Haran F M, et al. Optical focus control system for laser welding and direct casting. Opt Lasers Eng, 2000, 34(4-6): 415 doi: 10.1016/S0143-8166(00)00084-1 [58] Song L J, Mazumder J. Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol, 2011, 19(6): 1349 doi: 10.1109/TCST.2010.2093901 [59] Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602020.htm張學軍, 唐思熠, 肇恒躍, 等. 3D打印技術研究現狀和關鍵技術. 材料工程, 2016, 44(2): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602020.htm [60] Tang Y, Loh H T, Wong Y S, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J Mater Process Technol, 2003, 140(1-3): 368 doi: 10.1016/S0924-0136(03)00766-0 [61] Yan C Z, Shi Y S, Yang J S, et al. Preparation and selective laser sintering of nylon-12 coated metal powders and post processing. J Mater Process Technol, 2009, 209(17): 5785 doi: 10.1016/j.jmatprotec.2009.06.010 [62] Ting J, Peretti M W, Eisen W B. The effect of wake-closure phenomenon on gas atomization performance. Mater Sci Eng A, 2002, 326(1): 110 doi: 10.1016/S0921-5093(01)01437-X [63] Zhong S Y, Qi L H, Tang Y, et al. Development and experimental research of aluminium alloy droplet generator based on mechanical vibration. Procedia Eng, 2014, 81: 1583 doi: 10.1016/j.proeng.2014.10.194 [64] Su X B, Yang Y Q, Xiao D M, et al. An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol, 2013, 64(9-12): 1231 doi: 10.1007/s00170-012-4081-8 [65] Moat R J, Pinkerton A J, Li L, et al. Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A, 2011, 528(6): 2288 doi: 10.1016/j.msea.2010.12.010 [66] Baufeld B, Brandl E, Van der Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol, 2011, 211(6): 1146 doi: 10.1016/j.jmatprotec.2011.01.018 [67] Pi G, Zhang A F, Zhu G X, et al. Research on the forming process of three-dimensional metal parts fabricated by laser direct metal forming. Int J Adv Manuf Technol, 2011, 57(9-12): 841 doi: 10.1007/s00170-011-3404-5 [68] Amano R S, Rohatgi P K. Laser engineered net shaping process for SAE 4140 low alloy steel. Mater Sci Eng A, 2011, 528(22-23): 6680 doi: 10.1016/j.msea.2011.05.036 [69] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol, 2011, 57(5-8): 597 doi: 10.1007/s00170-011-3299-1 [70] Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Mater Process Technol, 2004, 148(1): 93 doi: 10.1016/j.jmatprotec.2004.01.058 [71] Haden C V, Zeng G, Carter F M, et al. Wire and arc additive manufactured steel: tensile and wear properties. Addit Manuf, 2017, 16: 115 [72] Li X, Wang C T, Zhang W G, et al. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett, 2009, 63(3-4): 403 doi: 10.1016/j.matlet.2008.10.065 [73] K?rner C. Additive manufacturing of metallic components by selective electron beam melting-a review. Int Mater Rev, 2016, 61(5): 361 doi: 10.1080/09506608.2016.1176289 [74] Lodes M A, Guschlbauer R, K?rner C. Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater Lett, 2015, 143: 298 doi: 10.1016/j.matlet.2014.12.105 [75] Rice C S, Mendez P F, Brown S B. Metal solid freeform fabrication using semi-solid slurries. JOM, 2000, 52(12): 31 doi: 10.1007/s11837-000-0065-5 [76] Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed. Mater Des, 2007, 28(8): 2278 doi: 10.1016/j.matdes.2006.08.008 [77] Zhao X H, Zuo Z B, Han Z Y, et al. A review on powder titanium alloy 3D printing technology. Mater Rev, 2016, 30(12): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201623018.htm趙霄昊, 左振博, 韓志宇, 等. 粉末鈦合金3D打印技術研究進展. 材料導報, 2016, 30(12): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201623018.htm [78] Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater, 2009, 2(1): 20 doi: 10.1016/j.jmbbm.2008.05.004 [79] Rafi H K, Karthik N V, Gong H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform, 2013, 22(12): 3872 doi: 10.1007/s11665-013-0658-0 [80] Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J, 2010, 16(6): 450 doi: 10.1108/13552541011083371 [81] Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: distance from build plate and part size. Mater Sci Eng A, 2013, 573: 264 doi: 10.1016/j.msea.2013.02.064 [82] Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: energy input, orientation, and location. Mater Sci Eng A, 2013, 573: 271 doi: 10.1016/j.msea.2013.02.065 [83] Edwards P, O'Conner A, Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng, 2013, 135(6): 061016-1 [84] Qiu C L, Ravi G A, Dance C, et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J Alloys Compd, 2015, 629: 351 doi: 10.1016/j.jallcom.2014.12.234 [85] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater, 2015, 87: 309 doi: 10.1016/j.actamat.2014.12.054 [86] Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol, 2017, 310: 60 doi: 10.1016/j.powtec.2017.01.030 [87] Zhong C L, Gasser A, Kittel J. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition. J Laser Appl, 2016, 28(2): 022010 doi: 10.2351/1.4943290 [88] Wang X Q, Gong X B, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Part B J Eng Manuf, 2017, 231(11): 1890 doi: 10.1177/0954405415619883 [89] Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication. Metall Mater Trans A, 2002, 33(8): 2559 doi: 10.1007/s11661-002-0376-y [90] Zhong C L, Gasser A, Kittel J, et al. Study of process window development for high deposition-rate laser material deposition by using mixed processing parameters. J Laser Appl, 2015, 27(3): 032008-1 doi: 10.2351/1.4919804 [91] Baufeld B. Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform, 2012, 21(7): 1416 doi: 10.1007/s11665-011-0009-y [92] Zhang H, Zhu H H, Qi T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties. Mater Sci Eng A, 2016, 656: 47 doi: 10.1016/j.msea.2015.12.101 [93] Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater, 2013, 61(5): 1809 doi: 10.1016/j.actamat.2012.11.052 [94] Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing. Foundry Technol, 2016, 37(11): 2402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611026.htm趙曉明, 齊元昊, 于全成, 等. AlSi10Mg鋁合金3D打印組織與性能研究. 鑄造技術, 2016, 37(11): 2402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611026.htm [95] Zuo H S. Research on Microstructural Evolution of Uniform Molten Aluminum Droplets during Controlled Deposition Fabrication[Dissertation]. Xi'an: Northwestern Polytechnical University, 2015左寒松. 均勻鋁微滴沉積成形微觀組織演化機理研究[學位論文]. 西安: 西北工業大學, 2015 [96] Simonelli M, Tuck C, Aboulkhair N T, et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall Mater Trans A, 2015, 46(9): 3842 doi: 10.1007/s11661-015-2882-8 [97] Yakout M, Elbestawi M A, Veldhuis S C. On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol, 2018, 95(5-8): 1953 doi: 10.1007/s00170-017-1303-0 [98] Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol, 2017, 249: 255 doi: 10.1016/j.jmatprotec.2017.05.042 [99] Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater Sci Eng A, 2017, 703: 567 doi: 10.1016/j.msea.2017.05.024 [100] Alsalla H H, Smith C, Hao L. Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316L stainless steel. Rapid Prototyping J, 2018, 24(1): 9 doi: 10.1108/RPJ-04-2016-0068 [101] Chen X H, Li J, Cheng X, et al. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A, 2018, 715: 307 doi: 10.1016/j.msea.2017.10.002 [102] Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol, 2018, 34(8): 895 doi: 10.1080/02670836.2018.1455012 [103] Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A, 2015, 644: 171 doi: 10.1016/j.msea.2015.07.056 [104] Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals. Rapid Prototyping J, 1995, 1(1): 26 doi: 10.1108/13552549510078113 [105] Zhu H H, Lu L, Fuh J Y H. Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol, 2003, 140(1-3): 314 doi: 10.1016/S0924-0136(03)00755-6 [106] Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater, 2012, 60(9): 3849 doi: 10.1016/j.actamat.2012.04.006 [107] Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J, 2009, 15(2): 96 doi: 10.1108/13552540910943397 [108] Ye Z H. The Personalized Design and Process Research of Selective Laser Melting Manufacturing of Ti6Al4V Tibial Implant [Dissertation]. Guangzhou: South China University of Technology, 2014葉梓恒. Ti6Al4V脛骨植入體個性化設計及其激光選區熔化制造工藝研究[學位論文]. 廣州: 華南理工大學, 2014 [109] Aiyiti W, Zhao W H, Tang Y P, et al. Study on the process parameters of MPAW-based rapid prototyping. Key Eng Mater, 2007, 353-358: 1931 doi: 10.4028/www.scientific.net/KEM.353-358.1931 [110] Horii T, Kirihara S, Miyamoto Y. Freeform fabrication of Ti-Al alloys by 3D micro-welding. Intermetallics, 2008, 16(11-12): 1245 doi: 10.1016/j.intermet.2008.07.009 [111] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 doi: 10.1016/j.actamat.2016.07.019 [112] Guo C, Lin F, Ge W J. Study on the fabrication process of 316L stainless steel via electron beam selective melting. J Mech Eng, 2014, 50(21): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201421024.htm郭超, 林峰, 葛文君. 電子束選區熔化成形316L不銹鋼的工藝研究. 機械工程學報, 2014, 50(21): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201421024.htm [113] Chen B B. An Investigation of Heat Transfer and Fluid Flow Behaviors in Electron Beam Freeform Fabrication[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2013陳彬斌. 電子束熔絲沉積快速成形傳熱與流動行為研究[學位論文]. 武漢: 華中科技大學, 2013 [114] Nickel A H, Barnett D M, Prinz F B. Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A, 2001, 317(1-2): 59 doi: 10.1016/S0921-5093(01)01179-0 [115] Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci, 2003, 38(1): 35 doi: 10.1023/A:1021153513925 [116] Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol, 2001, 111(1-3): 210 doi: 10.1016/S0924-0136(01)00522-2 [117] Wan H L, Wang Q Z, Lin H X. The effect of lack-of-fusion porosity on fatigue behavior of additive manufactured titanium alloy. Key Eng Mater, 2017, 723: 44 http://www.scientific.net/KEM.723.44 [118] Chao Y P, Qi L H, Zuo H S, et al. Remelting and bonding of deposited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture. Int J Mach Tools Manuf, 2013, 69: 38 doi: 10.1016/j.ijmachtools.2013.03.004 [119] Alfieri V, Argenio P, Caiazzo F, et al. Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Mater, 2017, 10(1): 30 http://www.ncbi.nlm.nih.gov/pubmed/28772380 [120] Wang D, Liu Y, Yang Y Q, et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyping J, 2016, 22(4): 706 doi: 10.1108/RPJ-06-2015-0078 [121] Xiong J, Li Y J, Li R, et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol, 2018, 252: 128 doi: 10.1016/j.jmatprotec.2017.09.020 [122] Wu X H, Liang J, Mei J F, et al. Microstructures of laser-deposited Ti-6Al-4V. Mater Des, 2004, 25(2): 137 doi: 10.1016/j.matdes.2003.09.009 [123] Zuo H S, Li H J, Qi L H, et al. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing. Appl Phys A, 2015, 118(1): 327 doi: 10.1007/s00339-014-8735-2 [124] Zhai Y W, Galarraga H, Lados D A. Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng, 2015, 114: 658 doi: 10.1016/j.proeng.2015.08.007 [125] Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol, 2012, 28(1): 1 http://www.cqvip.com/QK/84252X/201201/40832592.html [126] Liu X F, Li A, Yu B, et al. A High Efficiency Metal 3D Printing Equipment and Method: China Patent, CN201710068480.9. 2017-07-07劉雪峰, 李昂, 俞波, 等. 一種高效金屬3D打印設備和方法: 中國專利, CN201710068480.9. 2017-07-07