<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬增材制造技術的關鍵因素及發展方向

李昂 劉雪峰 俞波 尹寶強

李昂, 劉雪峰, 俞波, 尹寶強. 金屬增材制造技術的關鍵因素及發展方向[J]. 工程科學學報, 2019, 41(2): 159-173. doi: 10.13374/j.issn2095-9389.2019.02.002
引用本文: 李昂, 劉雪峰, 俞波, 尹寶強. 金屬增材制造技術的關鍵因素及發展方向[J]. 工程科學學報, 2019, 41(2): 159-173. doi: 10.13374/j.issn2095-9389.2019.02.002
LI Ang, LIU Xue-feng, YU Bo, YIN Bao-qiang. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2): 159-173. doi: 10.13374/j.issn2095-9389.2019.02.002
Citation: LI Ang, LIU Xue-feng, YU Bo, YIN Bao-qiang. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2): 159-173. doi: 10.13374/j.issn2095-9389.2019.02.002

金屬增材制造技術的關鍵因素及發展方向

doi: 10.13374/j.issn2095-9389.2019.02.002
基金項目: 

國家高技術研究發展計劃(863計劃)資助項目 2015AA034304

詳細信息
    通訊作者:

    劉雪峰, E-mail: liuxuefengbj@163.com

  • 中圖分類號: TH164

Key factors and developmental directions with regard to metal additive manufacturing

More Information
  • 摘要: 金屬增材制造技術是一種短流程、近終形的新型材料成形技術.在金屬增材制造技術中, 設備是載體, 材料是關鍵, 工藝是基礎, 三者是影響金屬增材制造技術發展的關鍵因素.本文通過對具有代表性的金屬增材制造技術的特點進行總結, 分析了設備、材料和工藝之間的關系以及三者在金屬增材制造技術中的重要作用; 綜述了金屬增材制造設備的原料供給系統、成形系統和控制系統的研究現狀; 總結了金屬增材制造材料中鈦合金、鎳合金、鋁合金和鋼鐵材料的典型組織特點和力學性能; 論述了金屬增材制造工藝參數對殘余應力、孔洞、精度和組織的影響; 指出了目前金屬增材制造技術在設備方面存在設備成本高、產品成形尺寸受限、成形效率低等問題, 在材料方面存在生產成本高、適用性差等問題, 在工藝方面存在參數匹配困難、熱積累嚴重等問題; 從降低設備和材料成本、擴大產品成形尺寸范圍、提高產品精度和成形效率、拓展材料種類和適用范圍、減少工藝參數匹配難度、提升產品質量及綜合性能、開發金屬增材制造新技術方面展望了金屬增材制造技術的發展方向.

     

  • 圖  1  金屬增材制造技術原理圖

    Figure  1.  Schematic diagram of metal additive manufacturing

    圖  2  設備、材料和工藝與金屬增材制造技術發展之間的關系

    Figure  2.  Relations among the equipment, material, process, and the development of metal additive manufacturing technology

    圖  3  微滴形成過程中具有代表性的點的軌跡[47]

    Figure  3.  Tracks of representation points during droplet formation[47]

    圖  4  激光變焦示意圖[51]

    Figure  4.  Schematic representation of automated fiber change[51]

    圖  5  傳感機構以及熔覆高度與寬度尺寸示意圖[55]

    Figure  5.  Schematic representation of sensor setup, bead height and width[55]

    圖  6  激光選區熔化技術制備的Ti-6Al-4V典型組織[78]

    Figure  6.  Typical microstructures of Ti-6Al-4V fabricated by selective laser melting[78]

    圖  7  激光選區熔化技術制備的Inconel 718典型組織[86]

    Figure  7.  Typical microstructures of Inconel 718 fabricated by selective laser melting[86]

    圖  8  激光選區熔化技術制備的AlSi10Mg典型組織[93]

    Figure  8.  Typical microstructures of AlSi10Mg fabricated by selective laser melting[93]

    圖  9  金屬電弧增材制造技術制備的316L不銹鋼的典型組織[99]. (a) XOZ截面低倍金相組織; (b) XOZ截面高倍金相組織

    Figure  9.  Typical microstructures of the 316L stainless steel processed by arc additive manufacturing[99]: (a) low magnification photograph of XOZ section; (b) high magnification photograph of XOZ section

    圖  10  不同激光脈沖周期和基板移動速度下樣品二維垂直應力分布圖[65]. (a) 80 ms, 14.0 mm ·s-1; (b) 60 ms, 10.5 mm ·s-1; (c) 40 ms, 7.0 mm ·s-1

    Figure  10.  2D vertical stress distribution diagram of samples at different laser pulse lengths and substrate moving speeds[65]: (a) 80 ms, 14.0 mm ·s-1; (b) 60 ms, 10.5 mm ·s-1; (c) 40 ms, 7.0 mm ·s-1

    圖  11  工藝參數對表面粗糙度及層高的影響[121]. (a) 掃描速度; (b) 送絲速度

    Figure  11.  Effect of process parameters on surface roughness and layer height[121]: (a) travel speed; (b) wire feed speed

    圖  12  不同噴射頻率下垂直柱外觀形貌及內部組織[95]. (a) 1 Hz金相組織; (b) 1 Hz掃描電鏡背散射; (c) 3 Hz金相組織; (d) 3 Hz掃描電鏡背散射; (e) 7 Hz金相組織; (f) 7 Hz掃描電鏡背散射

    Figure  12.  Profiles and microstructures of the columns with varied ejection frequencies[95]: (a) metallographic morphology for 1 Hz; (b) BSE image for 1 Hz; (c) metallographic morphology for 3 Hz; (d) BSE image for 3 Hz; (e) metallographic morphology for 7 Hz; (f) BSE image for 7 Hz

    圖  13  金屬液流快冷增材制造技術原理圖

    Figure  13.  Schematic diagram of liquid metal flow rapid cooling additive manufacturing

    表  1  各金屬增材制造技術的設備、材料和工藝的特點

    Table  1.   Characteristics of equipment, material, and process for different metal additive manufacturing technologies

    技術名稱 誕生年代 設備特點 材料特點 工藝特點 參考文獻
    激光選區燒結 1986 熱源為激光器,激光功率和光斑直徑均較小,采用振鏡使激光束運動 高、低熔點混合的高形狀要求粉材,預先鋪設在基板上 通過熔化低熔點粉材粘合高熔點粉材,層厚及掃描間距較小,需通過復雜后處理提高產品致密度 [10-12]
    微滴噴射 1993 熱源為電阻絲或感應線圈,噴嘴或基板做機械運動 材料無特殊形狀要求,熔化后以金屬熔體的形式供料 成形過程中熱源不熔化已沉積層,以微滴形式成形,層厚及掃描間距較小,需后續加工提高產品精度 [13-15]
    激光選區熔化 1995 熱源為激光器,激光功率較大,光斑直徑較小,采用振鏡使光束運動 單一種類高形狀要求粉材,預先鋪設在基板上 金屬粉材先于已沉積層熔化,層厚及掃描間距較小,無需復雜后處理 [16-17]
    激光工程化凈成形 1995 熱源為激光器,激光功率和光斑直徑大,激光器或基板做機械運動 一種或多種低形狀要求粉材,成形過程中輸送至成形區域 金屬粉材與已沉積層一起熔化,層厚及掃描間距大,需后續加工提高產品精度 [18-19]
    金屬電弧增材制造 1998 熱源為電弧,能量輸入較高,焊槍或基板做機械運動 低形狀要求線材,成形過程中輸送至成形區域 金屬線材與已沉積層一起熔化,層厚及掃描間距大,需后續加工提高產品精度 [20]
    電子束選區熔化 2000 熱源為電子束,功率及束斑直徑大,能量利用率高,采用偏轉線圈使電子束運動 單一種類低形狀要求粉材,預先鋪設在基板上 在高成形環境溫度下,金屬粉材先于已沉積層熔化,層厚及掃描間距較大,需后續加工提高產品精度 [21-22]
    金屬熔融沉積 2002 熱源為電阻絲或感應線圈,噴嘴或基板做機械運動 低熔點高形狀要求線材,熔化后以半固態的形式供料 成形過程中熱源不熔化已沉積層,以連續的半固態形式成形,層厚及掃描間距較大,需復雜后處理提高產品精度和結合強度 [23-24]
    電子束熔絲沉積 2003 熱源為電子束,功率及束斑直徑大,基板做機械運動 低形狀要求線材,成形過程中輸送至成形區域 金屬線材與已沉積層一起熔化,層厚及掃描間距大,需后續加工提高產品精度 [25-27]
    下載: 導出CSV

    表  2  不同金屬增材制造技術設備的典型參數及代表性制造單位[2-3, 31-37]

    Table  2.   Typical parameters and manufacturing units of equipment for different metal additive manufacturing technologies[2-3, 31-37]

    設備名稱 氣氛要求 熱源參數 運動參數 成形尺寸(長×寬×高)/(mm×mm×mm) 成形效率/(cm3·h-1) 代表性制造單位
    激光選區燒結 惰性氣體保護,氧體積分數≤0.01% CO2激光器,功率10~200 W 激光水平運動速度≤8 m·s-1 ≤450×450×500 ≤100 EOS
    微滴噴射 真空/惰性氣體保護 電阻/感應加熱 基板水平機械運動速度≤10 cm·min-1,微滴沉積頻率≤10 Hz ≤50 西北工業大學
    激光選區熔化 惰性氣體保護,氧體積分數≤0.01% 一個或多個Yb-fiber激光器,功率50~1000 W,光斑直徑50~200 μm 激光水平運動速度≤15 m·s-1 ≤800×400×500 ≤100 Fraunhofer ILT,Concept Laser,SLM Solutions,鉑力特
    激光工程化凈成形 惰性氣體保護,氧體積分數≤0.01% Yb-fiber/Nd-YAG/CO2激光器,功率0.5~10 kW,光斑直徑0.3~7 mm 激光器或基板做機械3~6軸運動,水平機械運動速度≤800 cm·min-1 ≤3000×3000×6000 ≤300 InssTek,Optomec
    金屬電弧增材制造 惰性氣體保護 鎢極氬弧/熔化極氬弧/等離子弧,電流90~300 A 焊槍或基板水平機械運動速度≤100 cm·min-1 ≤900 Cranfield University,哈爾濱工業大學
    電子束選區熔化 真空環境,真空度≤10-2 Pa 電子束,功率1~7 kW,束斑直徑100~400 μm 電子束水平運動速度≤8000 m·s-1 ≤200×200×380 ≤200 Arcam AB
    金屬熔融沉積 大氣環境 電阻加熱 基板水平機械運動速度≤60 cm·min-1 UTEP
    電子束熔絲沉積 真空環境,真空度≤10-2 Pa 電子束,功率 < 45 kW,束斑直徑3~5 mm 基板運動,速度≤200 cm·min-1 ≤5791×1219×1219 ≤1000 Efesto
    下載: 導出CSV

    表  3  不同金屬增材制造技術的主要材料種類、材料形狀與質量要求以及材料典型制備方法

    Table  3.   Material type, material shape, material quality requirements, and typical material preparation methods for different metal additive manufacturing technologies

    技術名稱 主要材料種類 材料形狀與質量要求 材料典型制備方法 參考文獻
    激光選區燒結 Cu-SCuP、Ni-Sn、Fe-Sn、碳鋼-尼龍 球形粉材,球形度>0.8,氧體積分數 < 0.08%,流動性(流過50 g粉末所需時間)>10 s,平均粒徑15~150 μm 氣霧化法制粉,等離子旋轉電極霧化法制粉 [60-62]
    微滴噴射 錫合金、鋁合金 原料形狀無特殊要求 [14, 63]
    激光選區熔化 Ti-6Al-4V、AlSi10Mg、316L不銹鋼、Inconel 718、CoCrMo 球形粉材,球形度>0.7,氧體積分數 < 0.08%,流動性>10 s,平均粒徑15~53 μm 氣霧化法制粉,等離子旋轉電極霧化法制粉,水霧化制粉 [2, 7, 64]
    激光工程化凈成形 Ti-6Al-4V、Inconel 718、316L不銹鋼 球形粉材/線材,粉材平均粒徑50~200 μm,線材平均直徑0.4~2 mm [65-68]
    金屬電弧增材制造 Ti-6Al-4V、鋁合金、316L不銹鋼 線材,平均直徑1~4 mm [69-71]
    電子束選區熔化 Ti-Al、Ti-6Al-4V、316L不銹鋼、Cu 球形粉材,氧體積分數 < 0.08%,平均粒徑30~106 μm 氣霧化法制粉,等離子旋轉電極霧化法制粉,氫化-脫氫法制粉 [72-74]
    金屬熔融沉積 錫合金 線材,直徑1.75 mm±0.02 mm [75]
    電子束熔絲沉積 鈦合金、316L不銹鋼 線材,平均直徑0.8~1.2 mm [76]
    下載: 導出CSV

    表  4  不同技術制備的Ti-6Al-4V的典型性能對比

    Table  4.   Comparison of typical mechanical properties of Ti-6Al-4V fabricated by different technologies

    技術名稱 屈服強度/MPa 抗拉強度/MPa 延伸率/% 參考文獻
    激光選區熔化 1040~1333 1140~1407 4.5~8.2 [78, 80]
    電子束選區熔化 783~984 833~1081 2.7~12.2 [81-83]
    激光工程化凈成形 984~1105 1025~1103 4~5 [84-85]
    鍛造+退火 878 926 20 [84]
    下載: 導出CSV

    表  5  不同技術制備的Inconel 718的典型性能對比

    Table  5.   Comparison of typical mechanical properties of Inconel 718 fabricated by different technologies

    技術名稱 屈服強度/MPa 抗拉強度/MPa 延伸率/% 參考文獻
    激光選區熔化 590~903 845~1142 4.5~11 [88-89]
    激光工程化凈成形 525~1105 827~1103 4~29 [88, 90-91]
    鑄造 758 862 22 [88]
    下載: 導出CSV

    表  6  不同技術制備的316L不銹鋼的典型性能對比

    Table  6.   Comparison of typical mechanical properties of 316L stainless steel fabricated by different technologies

    技術名稱 屈服強度/MPa 抗拉強度/MPa 延伸率/% 參考文獻
    激光選區熔化 387~420 564~580 35~70 [98, 100]
    金屬電弧增材制造 235~422 533 48 [101-102]
    鍛造 255~310 525~623 56~63 [103]
    下載: 導出CSV

    表  7  不同金屬增材制造技術的典型工藝參數

    Table  7.   Typical process parameters for different metal additive manufacturing technologies

    技術名稱 冷卻速度/(K·s-1) 層厚/mm 掃描間距/mm 表面粗糙度/μm 參考文獻
    激光選區燒結 0.02~0.25 0.05~0.5 10~60 [104-105]
    微滴噴射 10~103 0.1~1 0.15~1 15~100 [14, 46]
    激光選區熔化 103~108 0.02~0.15 0.05~0.2 10~50 [106-108]
    激光工程化凈成形 < 104 0.1~1.5 0.5~2 60~150 [2, 31]
    金屬電弧增材制造 0.2~2.5 0.5~3 100~500 [109-110]
    電子束選區熔化 103~104 0.1~0.5 0.1~1 25~80 [111-112]
    金屬熔融沉積 0.5~1 1~1.5 [24]
    電子束熔絲沉積 20~500 1~3 2~5 [113]
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mohan Pandey P, Venkata Reddy N, Dhande S G. Slicing procedures in layered manufacturing: a review. Rapid Prototyping J, 2003, 9(5): 274 doi: 10.1108/13552540310502185
    [2] Qi L H, Chao Y P, Luo J, et al. A novel selection method of scanning step for fabricating metal components based on micro-droplet deposition manufacture. Int J Mach Tools Manuf, 2012, 56: 50 doi: 10.1016/j.ijmachtools.2011.12.002
    [3] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev, 2012, 57(3): 133 doi: 10.1179/1743280411Y.0000000014
    [4] Frazier W E. Metal additive manufacturing: a review. J Mater Eng Perform, 2014, 23(6): 1917 doi: 10.1007/s11665-014-0958-z
    [5] Pinkerton A J. Lasers in additive manufacturing. Opt Laser Technol, 2016, 78: 25 doi: 10.1016/j.optlastec.2015.09.025
    [6] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf, 2006, 46(12-13): 1459 doi: 10.1016/j.ijmachtools.2005.09.005
    [7] Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci, 2018, 141: 207 doi: 10.1016/j.commatsci.2017.09.018
    [8] Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev, 2016, 61(5): 315 doi: 10.1080/09506608.2015.1116649
    [9] Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res, 2016, 34(3): 369 doi: 10.1002/jor.23075
    [10] Deckard C R. Method and Apparatus for Producing Parts by Selective Sintering: US Patent, US005316580A. 1994-05-31
    [11] Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J, 2005, 11(1): 26 doi: 10.1108/13552540510573365
    [12] Kruth J P, Wang X, Laoui T, et al. Lasers and materials in selective laser sintering. Assembly Autom, 2003, 23(4): 357 doi: 10.1108/01445150310698652
    [13] Orme M. A novel technique of rapid solidification net-form materials synthesis. J Mater Eng Perform, 1993, 2(3): 399 doi: 10.1007/BF02648828
    [14] Fang M, Chandra S, Park C B. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping J, 2008, 14(1): 44 doi: 10.1108/13552540810841553
    [15] Liu Q B, Orme M. High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol, 2001, 115(3): 271 doi: 10.1016/S0924-0136(01)00740-3
    [16] Meiners W, Wissenbach K D, Gasser A D. Shaped Body especially Prototype or Replacement Part Production: DE Patent, DE19649865C1. 1998-02-12
    [17] Sato Y, Tsukamoto M, Yamashita Y. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting. Appl Phys B, 2015, 119(3): 545 doi: 10.1007/s00340-015-6059-3
    [18] Jeantette F P, Keicher D M, Romero J A, et al. Method and System for Producing Complex-shape Objects: US Patent, 6046426. 2000-04-04
    [19] Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4
    [20] Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding. Proc Instn Mech Eng Part B J Eng Manuf, 1998, 212(3): 175 doi: 10.1243/0954405981515590
    [21] Andersson L E, Larsson M. Device and Arrangement for Producing A Three-dimensional Object: US Patent, 7537722B2. 2009-05-26
    [22] Z?h M F, Lutzmann S. Modelling and simulation of electron beam melting. Prod Eng, 2010, 4(1): 15 doi: 10.1007/s11740-009-0197-6
    [23] Wu G H, Langrana N A, Sadanji R, et al. Solid freeform fabrication of metal components using fused deposition of metals. Mater Des, 2002, 23(1): 97 doi: 10.1016/S0261-3069(01)00079-6
    [24] Mireles J, Espalin D, Roberson D, et al. Fused deposition modeling of metals//Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2012: 836 http://www.researchgate.net/publication/289208001_Fused_deposition_modeling_of_metals
    [25] Taminger K M B, Hafley Robert A. Characterization of 2219 aluminum produced by electron beam freeform fabrication//Proceeding of the 13th Solid Freeform Fabrication Symposium. Austin, 2002: 482
    [26] Chen T, Pang S Y, Tang Q, et al. Evaporation ripped metallurgical pore in electron beam freeform fabrication of Ti-6-Al-4-V. Mater Manuf Processes, 2016, 31(15): 1995 doi: 10.1080/10426914.2015.1127948
    [27] Yan W Z, Yue Z F, Zhang J Z. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication. Mater Des, 2016, 89: 1205 doi: 10.1016/j.matdes.2015.10.094
    [28] Yang Y Q, Ye Z H, Wang D, et al. Feasibility analysis of domestic industrialization of 3D printing equipment. Adv Mater Ind, 2013(8): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201308005.htm

    楊永強, 葉梓恒, 王迪, 等. 3D打印設備國內產業化可行性分析. 新材料產業, 2013(8): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201308005.htm
    [29] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm

    王華明. 高性能大型金屬構件激光增材制造: 若干材料基礎問題. 航空學報, 2014, 35(10): 2690 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
    [30] Huang W D. Research progress of 3D printing technology materials. J New Industrialization, 2016, 6(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201603009.htm

    黃衛東. 材料3D打印技術的研究進展. 新型工業化, 2016, 6(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201603009.htm
    [31] Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 doi: 10.1016/j.pmatsci.2016.08.001
    [32] Karunakaran K P, Bernard A, Suryakumar S, et al. Rapid manufacturing of metallic objects. Rapid Prototyping J, 2012, 18(4): 264 doi: 10.1108/13552541211231644
    [33] Seifi M, Salem A, Beuth J, et al. Overview of materials qualification needs for metal additive manufacturing. JOM, 2016, 68(3): 747 doi: 10.1007/s11837-015-1810-0
    [34] Xiong J, Zhang G J. Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol, 2014, 214(4): 962 doi: 10.1016/j.jmatprotec.2013.11.014
    [35] Xu L F. Foundational Research on Uniform Droplets Spraying Micro-fabrication Technology [Dissertation]. Xi'an: Northwestern Polytechnical University, 2005

    徐林峰. 均勻液滴噴射微制造技術基礎研究[學位論文]. 西安: 西北工業大學, 2005
    [36] Xiong J. Forming Characteristics in Multi-layer Single-head GMA Additive Manufacturing and Control for Deposition Dimension [Dissertation]. Harbin: Harbin Institute of Technology, 2014

    熊俊. 多層單道GMA增材制造成形特性及熔敷尺寸控制[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
    [37] He L. The Study on Semi-solid Metal Extrusion Deposition Molding Technology Based on Five-axis Linkage CNC Workbench [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2015

    何龍. 基于五軸聯動的半固態金屬擠出沉積成型技術研究[學位論文]. 武漢: 華中科技大學, 2015
    [38] Wang B. Novel Equipment Development and Process Research on Selective Laser Melting[Dissertation]. Changsha: Hunan University, 2016

    王兵. 新型選區激光熔化設備開發與工藝研究[學位論文]. 長沙: 湖南大學, 2016
    [39] Chen G X, Zeng X Y. Design on SLM powder coating device. Manuf Technol Mach Tool, 2010(3): 57 doi: 10.3969/j.issn.1005-2402.2010.03.018

    陳光霞, 曾曉雁. 選擇性激光熔化激光快速成型鋪粉裝置設計. 制造技術與機床, 2010(3): 57 doi: 10.3969/j.issn.1005-2402.2010.03.018
    [40] Cui Y Y. Study on the Design of Powder Coating System of Selective Laser Melting[Dissertation]. Nanjing: Nanjing University of Science and Technology, 2016

    崔祎赟. 激光選區熔化鋪粉系統設計研究[學位論文]. 南京: 南京理工大學, 2016
    [41] Mahesh M, Wong Y S, Fuh J Y H, et al. A six-sigma approach for benchmarking of RP&M processes. Int J Adv Manuf Technol, 2006, 31(3-4): 374 doi: 10.1007/s00170-005-0201-z
    [42] Wen S Y, Shin Y C, Murthy J Y, et al. Modeling of coaxial powder flow for the laser direct deposition process. Int J Heat Mass Transfer, 2009, 52(25-26): 5867 doi: 10.1016/j.ijheatmasstransfer.2009.07.018
    [43] Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J Mater Process Technol, 2010, 210(15): 2125 doi: 10.1016/j.jmatprotec.2010.07.036
    [44] Tian F J, Han H. Design of coaxial powder feeding system for FGM laser rapid shaping. Trans Shenyang Ligong Univ, 2008, 27(6): 48 doi: 10.3969/j.issn.1003-1251.2008.06.012

    田鳳杰, 韓輝. 功能梯度材料激光快速成形同軸送粉系統設計. 沈陽理工大學學報, 2008, 27(6): 48 doi: 10.3969/j.issn.1003-1251.2008.06.012
    [45] Tseng A A, Lee M H, Zhao B. Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol-Trans ASME, 2001, 123(1): 74 doi: 10.1115/1.1286187
    [46] Zhong S Y. Research on Uniform Metal Droplet Generation and Surface Topography Control in Metal Micro-droplet Deposition Manufacture[Dissertation]. Xi'an: Northwestern Polytechnical University, 2016

    鐘宋義. 均勻金屬微滴氣動按需噴射行為及表面形貌控制研究[學位論文]. 西安: 西北工業大學, 2016
    [47] Zhong S Y, Qi L H, Luo J, et al. Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J Mater Process Technol, 2014, 214(12): 3089 doi: 10.1016/j.jmatprotec.2014.07.012
    [48] Mumtaz K A, Hopkinson N. Selective laser melting of thin wall parts using pulse shaping. J Mater Process Technol, 2010, 210(2): 279 doi: 10.1016/j.jmatprotec.2009.09.011
    [49] Baek G Y, Lee K Y, Park S H, et al. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness. Met Mater Int, 2017, 23(6): 1204 doi: 10.1007/s12540-017-7049-2
    [50] Yan H F. Key Techniques Research on SLM 3D Printing Equipment for Dental Application [Dissertation]. Beijing: Beijing University of Technology, 2016

    晏恒峰. 牙科激光選區熔化3D打印設備關鍵技術研究[學位論文]. 北京: 北京工業大學, 2016
    [51] Schleifenbaum H, Meiners W, Wissenbach K, et al. Individualized production by means of high power selective laser melting. CIRP J Manuf Sci Technol, 2010, 2(3): 161 doi: 10.1016/j.cirpj.2010.03.005
    [52] Hofman J T, Pathiraj B, Van Dijk J, et al. A camera based feedback control strategy for the laser cladding process. J Mater Process Technol, 2012, 212(11): 2455 doi: 10.1016/j.jmatprotec.2012.06.027
    [53] Hu D M, Kovacevic R. Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf, 2003, 43(1): 51 doi: 10.1016/S0890-6955(02)00163-3
    [54] Craeghs T, Clijsters S, Yasa E, et al. Online quality control of selective laser melting//Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2011: 212 http://www.researchgate.net/publication/268293509_Online_quality_control_of_selective_laser_melting/download
    [55] Herali? A, Christiansson A K, Ottosson M, et al. Increased stability in laser metal wire deposition through feedback from optical measurements. Opt Lasers Eng, 2010, 48(4): 478 doi: 10.1016/j.optlaseng.2009.08.012
    [56] Bi G J, Schürmann B, Gasser A, et al. Development and qualification of a novel laser-cladding head with integrated sensors. Int J Mach Tools Manuf, 2007, 47(3-4): 555 doi: 10.1016/j.ijmachtools.2006.05.010
    [57] Hand D P, Fox M D T, Haran F M, et al. Optical focus control system for laser welding and direct casting. Opt Lasers Eng, 2000, 34(4-6): 415 doi: 10.1016/S0143-8166(00)00084-1
    [58] Song L J, Mazumder J. Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol, 2011, 19(6): 1349 doi: 10.1109/TCST.2010.2093901
    [59] Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602020.htm

    張學軍, 唐思熠, 肇恒躍, 等. 3D打印技術研究現狀和關鍵技術. 材料工程, 2016, 44(2): 122 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602020.htm
    [60] Tang Y, Loh H T, Wong Y S, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J Mater Process Technol, 2003, 140(1-3): 368 doi: 10.1016/S0924-0136(03)00766-0
    [61] Yan C Z, Shi Y S, Yang J S, et al. Preparation and selective laser sintering of nylon-12 coated metal powders and post processing. J Mater Process Technol, 2009, 209(17): 5785 doi: 10.1016/j.jmatprotec.2009.06.010
    [62] Ting J, Peretti M W, Eisen W B. The effect of wake-closure phenomenon on gas atomization performance. Mater Sci Eng A, 2002, 326(1): 110 doi: 10.1016/S0921-5093(01)01437-X
    [63] Zhong S Y, Qi L H, Tang Y, et al. Development and experimental research of aluminium alloy droplet generator based on mechanical vibration. Procedia Eng, 2014, 81: 1583 doi: 10.1016/j.proeng.2014.10.194
    [64] Su X B, Yang Y Q, Xiao D M, et al. An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol, 2013, 64(9-12): 1231 doi: 10.1007/s00170-012-4081-8
    [65] Moat R J, Pinkerton A J, Li L, et al. Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A, 2011, 528(6): 2288 doi: 10.1016/j.msea.2010.12.010
    [66] Baufeld B, Brandl E, Van der Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol, 2011, 211(6): 1146 doi: 10.1016/j.jmatprotec.2011.01.018
    [67] Pi G, Zhang A F, Zhu G X, et al. Research on the forming process of three-dimensional metal parts fabricated by laser direct metal forming. Int J Adv Manuf Technol, 2011, 57(9-12): 841 doi: 10.1007/s00170-011-3404-5
    [68] Amano R S, Rohatgi P K. Laser engineered net shaping process for SAE 4140 low alloy steel. Mater Sci Eng A, 2011, 528(22-23): 6680 doi: 10.1016/j.msea.2011.05.036
    [69] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol, 2011, 57(5-8): 597 doi: 10.1007/s00170-011-3299-1
    [70] Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Mater Process Technol, 2004, 148(1): 93 doi: 10.1016/j.jmatprotec.2004.01.058
    [71] Haden C V, Zeng G, Carter F M, et al. Wire and arc additive manufactured steel: tensile and wear properties. Addit Manuf, 2017, 16: 115
    [72] Li X, Wang C T, Zhang W G, et al. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett, 2009, 63(3-4): 403 doi: 10.1016/j.matlet.2008.10.065
    [73] K?rner C. Additive manufacturing of metallic components by selective electron beam melting-a review. Int Mater Rev, 2016, 61(5): 361 doi: 10.1080/09506608.2016.1176289
    [74] Lodes M A, Guschlbauer R, K?rner C. Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater Lett, 2015, 143: 298 doi: 10.1016/j.matlet.2014.12.105
    [75] Rice C S, Mendez P F, Brown S B. Metal solid freeform fabrication using semi-solid slurries. JOM, 2000, 52(12): 31 doi: 10.1007/s11837-000-0065-5
    [76] Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed. Mater Des, 2007, 28(8): 2278 doi: 10.1016/j.matdes.2006.08.008
    [77] Zhao X H, Zuo Z B, Han Z Y, et al. A review on powder titanium alloy 3D printing technology. Mater Rev, 2016, 30(12): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201623018.htm

    趙霄昊, 左振博, 韓志宇, 等. 粉末鈦合金3D打印技術研究進展. 材料導報, 2016, 30(12): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201623018.htm
    [78] Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater, 2009, 2(1): 20 doi: 10.1016/j.jmbbm.2008.05.004
    [79] Rafi H K, Karthik N V, Gong H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform, 2013, 22(12): 3872 doi: 10.1007/s11665-013-0658-0
    [80] Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J, 2010, 16(6): 450 doi: 10.1108/13552541011083371
    [81] Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: distance from build plate and part size. Mater Sci Eng A, 2013, 573: 264 doi: 10.1016/j.msea.2013.02.064
    [82] Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: energy input, orientation, and location. Mater Sci Eng A, 2013, 573: 271 doi: 10.1016/j.msea.2013.02.065
    [83] Edwards P, O'Conner A, Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng, 2013, 135(6): 061016-1
    [84] Qiu C L, Ravi G A, Dance C, et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J Alloys Compd, 2015, 629: 351 doi: 10.1016/j.jallcom.2014.12.234
    [85] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater, 2015, 87: 309 doi: 10.1016/j.actamat.2014.12.054
    [86] Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol, 2017, 310: 60 doi: 10.1016/j.powtec.2017.01.030
    [87] Zhong C L, Gasser A, Kittel J. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition. J Laser Appl, 2016, 28(2): 022010 doi: 10.2351/1.4943290
    [88] Wang X Q, Gong X B, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Part B J Eng Manuf, 2017, 231(11): 1890 doi: 10.1177/0954405415619883
    [89] Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication. Metall Mater Trans A, 2002, 33(8): 2559 doi: 10.1007/s11661-002-0376-y
    [90] Zhong C L, Gasser A, Kittel J, et al. Study of process window development for high deposition-rate laser material deposition by using mixed processing parameters. J Laser Appl, 2015, 27(3): 032008-1 doi: 10.2351/1.4919804
    [91] Baufeld B. Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform, 2012, 21(7): 1416 doi: 10.1007/s11665-011-0009-y
    [92] Zhang H, Zhu H H, Qi T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties. Mater Sci Eng A, 2016, 656: 47 doi: 10.1016/j.msea.2015.12.101
    [93] Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater, 2013, 61(5): 1809 doi: 10.1016/j.actamat.2012.11.052
    [94] Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing. Foundry Technol, 2016, 37(11): 2402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611026.htm

    趙曉明, 齊元昊, 于全成, 等. AlSi10Mg鋁合金3D打印組織與性能研究. 鑄造技術, 2016, 37(11): 2402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201611026.htm
    [95] Zuo H S. Research on Microstructural Evolution of Uniform Molten Aluminum Droplets during Controlled Deposition Fabrication[Dissertation]. Xi'an: Northwestern Polytechnical University, 2015

    左寒松. 均勻鋁微滴沉積成形微觀組織演化機理研究[學位論文]. 西安: 西北工業大學, 2015
    [96] Simonelli M, Tuck C, Aboulkhair N T, et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall Mater Trans A, 2015, 46(9): 3842 doi: 10.1007/s11661-015-2882-8
    [97] Yakout M, Elbestawi M A, Veldhuis S C. On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol, 2018, 95(5-8): 1953 doi: 10.1007/s00170-017-1303-0
    [98] Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol, 2017, 249: 255 doi: 10.1016/j.jmatprotec.2017.05.042
    [99] Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater Sci Eng A, 2017, 703: 567 doi: 10.1016/j.msea.2017.05.024
    [100] Alsalla H H, Smith C, Hao L. Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316L stainless steel. Rapid Prototyping J, 2018, 24(1): 9 doi: 10.1108/RPJ-04-2016-0068
    [101] Chen X H, Li J, Cheng X, et al. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A, 2018, 715: 307 doi: 10.1016/j.msea.2017.10.002
    [102] Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol, 2018, 34(8): 895 doi: 10.1080/02670836.2018.1455012
    [103] Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A, 2015, 644: 171 doi: 10.1016/j.msea.2015.07.056
    [104] Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals. Rapid Prototyping J, 1995, 1(1): 26 doi: 10.1108/13552549510078113
    [105] Zhu H H, Lu L, Fuh J Y H. Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol, 2003, 140(1-3): 314 doi: 10.1016/S0924-0136(03)00755-6
    [106] Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater, 2012, 60(9): 3849 doi: 10.1016/j.actamat.2012.04.006
    [107] Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J, 2009, 15(2): 96 doi: 10.1108/13552540910943397
    [108] Ye Z H. The Personalized Design and Process Research of Selective Laser Melting Manufacturing of Ti6Al4V Tibial Implant [Dissertation]. Guangzhou: South China University of Technology, 2014

    葉梓恒. Ti6Al4V脛骨植入體個性化設計及其激光選區熔化制造工藝研究[學位論文]. 廣州: 華南理工大學, 2014
    [109] Aiyiti W, Zhao W H, Tang Y P, et al. Study on the process parameters of MPAW-based rapid prototyping. Key Eng Mater, 2007, 353-358: 1931 doi: 10.4028/www.scientific.net/KEM.353-358.1931
    [110] Horii T, Kirihara S, Miyamoto Y. Freeform fabrication of Ti-Al alloys by 3D micro-welding. Intermetallics, 2008, 16(11-12): 1245 doi: 10.1016/j.intermet.2008.07.009
    [111] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 doi: 10.1016/j.actamat.2016.07.019
    [112] Guo C, Lin F, Ge W J. Study on the fabrication process of 316L stainless steel via electron beam selective melting. J Mech Eng, 2014, 50(21): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201421024.htm

    郭超, 林峰, 葛文君. 電子束選區熔化成形316L不銹鋼的工藝研究. 機械工程學報, 2014, 50(21): 152 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201421024.htm
    [113] Chen B B. An Investigation of Heat Transfer and Fluid Flow Behaviors in Electron Beam Freeform Fabrication[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2013

    陳彬斌. 電子束熔絲沉積快速成形傳熱與流動行為研究[學位論文]. 武漢: 華中科技大學, 2013
    [114] Nickel A H, Barnett D M, Prinz F B. Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A, 2001, 317(1-2): 59 doi: 10.1016/S0921-5093(01)01179-0
    [115] Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci, 2003, 38(1): 35 doi: 10.1023/A:1021153513925
    [116] Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol, 2001, 111(1-3): 210 doi: 10.1016/S0924-0136(01)00522-2
    [117] Wan H L, Wang Q Z, Lin H X. The effect of lack-of-fusion porosity on fatigue behavior of additive manufactured titanium alloy. Key Eng Mater, 2017, 723: 44 http://www.scientific.net/KEM.723.44
    [118] Chao Y P, Qi L H, Zuo H S, et al. Remelting and bonding of deposited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture. Int J Mach Tools Manuf, 2013, 69: 38 doi: 10.1016/j.ijmachtools.2013.03.004
    [119] Alfieri V, Argenio P, Caiazzo F, et al. Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Mater, 2017, 10(1): 30 http://www.ncbi.nlm.nih.gov/pubmed/28772380
    [120] Wang D, Liu Y, Yang Y Q, et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyping J, 2016, 22(4): 706 doi: 10.1108/RPJ-06-2015-0078
    [121] Xiong J, Li Y J, Li R, et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol, 2018, 252: 128 doi: 10.1016/j.jmatprotec.2017.09.020
    [122] Wu X H, Liang J, Mei J F, et al. Microstructures of laser-deposited Ti-6Al-4V. Mater Des, 2004, 25(2): 137 doi: 10.1016/j.matdes.2003.09.009
    [123] Zuo H S, Li H J, Qi L H, et al. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing. Appl Phys A, 2015, 118(1): 327 doi: 10.1007/s00339-014-8735-2
    [124] Zhai Y W, Galarraga H, Lados D A. Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng, 2015, 114: 658 doi: 10.1016/j.proeng.2015.08.007
    [125] Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol, 2012, 28(1): 1 http://www.cqvip.com/QK/84252X/201201/40832592.html
    [126] Liu X F, Li A, Yu B, et al. A High Efficiency Metal 3D Printing Equipment and Method: China Patent, CN201710068480.9. 2017-07-07

    劉雪峰, 李昂, 俞波, 等. 一種高效金屬3D打印設備和方法: 中國專利, CN201710068480.9. 2017-07-07
  • 加載中
圖(13) / 表(7)
計量
  • 文章訪問數:  2551
  • HTML全文瀏覽量:  919
  • PDF下載量:  216
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-01-17
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回