<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于超像素與稀疏重構顯著性的極化SAR艦船檢測

羅嘉豪 殷君君 楊健

羅嘉豪, 殷君君, 楊健. 基于超像素與稀疏重構顯著性的極化SAR艦船檢測[J]. 工程科學學報, 2023, 45(10): 1684-1692. doi: 10.13374/j.issn2095-9389.2022.12.28.002
引用本文: 羅嘉豪, 殷君君, 楊健. 基于超像素與稀疏重構顯著性的極化SAR艦船檢測[J]. 工程科學學報, 2023, 45(10): 1684-1692. doi: 10.13374/j.issn2095-9389.2022.12.28.002
LUO Jiahao, YIN Junjun, YANG Jian. Polarimetric SAR ship detection based on superpixel and sparse reconstruction saliency[J]. Chinese Journal of Engineering, 2023, 45(10): 1684-1692. doi: 10.13374/j.issn2095-9389.2022.12.28.002
Citation: LUO Jiahao, YIN Junjun, YANG Jian. Polarimetric SAR ship detection based on superpixel and sparse reconstruction saliency[J]. Chinese Journal of Engineering, 2023, 45(10): 1684-1692. doi: 10.13374/j.issn2095-9389.2022.12.28.002

基于超像素與稀疏重構顯著性的極化SAR艦船檢測

doi: 10.13374/j.issn2095-9389.2022.12.28.002
基金項目: 國家自然科學基金資助項目(62222102, 62171023, U20B2062)
詳細信息
    通訊作者:

    E-mail: junjun_yin@ustb.edu.cn

  • 中圖分類號: TN958

Polarimetric SAR ship detection based on superpixel and sparse reconstruction saliency

More Information
  • 摘要: 極化SAR艦船檢測是極化SAR系統的重要應用之一,現有的極化SAR艦船檢測方法在具有強背景雜波的條件下容易將強雜波誤檢為目標,造成虛警;在多尺度艦船檢測情況下小尺寸的艦船容易淹沒在背景雜波中,造成小尺寸目標的漏檢。針對上述問題,本文提出一種基于超像素與稀疏重構顯著性的極化SAR艦船檢測方法。該方法首先用超像素分割方法將大幅的極化SAR場景圖像分割,在超像素級別上使用稀疏重構顯著性方法保留含有艦船目標的超像素,再在這些保留下來的超像素中逐像素使用稀疏重構顯著性檢測方法,得到最終的艦船檢測結果。本文選取強雜波場景和多尺度艦船檢測場景的兩個場景的ALOS-2衛星極化SAR數據進行對比實驗,實驗結果表明,本文方法在強雜波場景下品質因數達到94.87%,在多尺度艦船檢測場景下品質因數達到94.05%。

     

  • 圖  1  基于稀疏重構的顯著性目標檢測流程圖

    Figure  1.  Flowchart of object detection based on sparse reconstruction saliency

    圖  2  基于超像素與稀疏重構顯著性的極化SAR艦船檢測流程圖

    Figure  2.  Flowchart of polarimetric SAR ship detection based on superpixel and sparse reconstruction saliency

    圖  3  SLIC超像素分割效果圖. (a) SLIC; (b) 基于修正Wishart分布的SLIC

    Figure  3.  SLIC superpixel segmentation results: (a) SLIC; (b) SLIC based on the revised Wishart distribution

    圖  4  極化SAR數據Span灰度圖

    Figure  4.  Span grayscale image of polarimetric SAR data

    圖  5  雜波模板的Span灰度圖

    Figure  5.  Span grayscale image of the clutter template

    圖  6  超像素檢測結果圖. (a) P=0.3; (b) P=0.1

    Figure  6.  Superpixel detection result: (a) P = 0.3; (b) P = 0.1

    圖  7  最終的艦船檢測結果

    Figure  7.  Final ship detection results

    圖  8  場景一和場景二的Pauli為彩色圖與真值圖. (a)場景一的Pauli偽彩色圖; (b)場景一的真值圖; (c)場景二的Pauli偽彩色圖; (d)場景二的真值圖

    Figure  8.  Pauli pseudo-color maps and truth maps of scene 1 and scene 2: (a) Pauli pseudo-color map of scene 1; (b) truth map for scene 1; (c) Pauli pseudo-color map of scene 2; (d) truth map for scene 2

    圖  9  場景一的艦船檢測結果. (a) CA-CFAR; (b) OS-CFAR; (c) 顯著性方法; (d) 本文方法; (e) 場景一的真值圖

    Figure  9.  Ship detection results in scene 1: (a) CA-CFAR; (b) OS-CFAR; (c) saliency method; (d) our method; (e) truth map for scene 1

    圖  10  場景二的艦船檢測結果. (a) CA-CFAR; (b) OS-CFAR; (c) 顯著性方法; (d) 本文方法; (e) 場景二的真值圖

    Figure  10.  Ship detection results in scene 2: (a) CA-CFAR; (b) OS-CFAR; (c) saliency method; (d) our method; (e) truth map for scene 2

    圖  11  場景一中的特殊漏檢結果

    Figure  11.  Special missed detection result in scene 1

    圖  12  場景二中的特殊漏檢結果

    Figure  12.  Special missed detection result in scene 2

    表  1  場景一極化SAR艦船定量檢測結果

    Table  1.   Polarization SAR ship quantitative detection results of scene 1

    MethodNcNFANMFoM/%
    CA-CFAR373288.10
    OS-CFAR365381.82
    Saliency method350489.74
    Our method370294.87
    下載: 導出CSV

    表  2  場景二極化SAR艦船定量檢測結果

    Table  2.   Polarization SAR ship quantitative detection results of scene 2

    MethodNcNFANMFoM/%
    CA-CFAR750791.46
    OS-CFAR776587.50
    Saliency method6501779.27
    Our method792394.05
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang X S, Chen S W. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives. J Radars, 2020, 9(2): 259 doi: 10.12000/JR19109

    王雪松, 陳思偉. 合成孔徑雷達極化成像解譯識別技術的進展與展望. 雷達學報, 2020, 9(2):259 doi: 10.12000/JR19109
    [2] Du L, Wang Z C, Wang Y, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes. J Radars, 2020, 9(1): 34 doi: 10.12000/JR19104

    杜蘭, 王兆成, 王燕, 等. 復雜場景下單通道SAR目標檢測及鑒別研究進展綜述. 雷達學報, 2020, 9(1):34 doi: 10.12000/JR19104
    [3] Deng Y K, Yu W D, Zhang H, et al. Forthcoming spaceborne SAR development. J Radars, 2020, 9(1): 1 doi: 10.12000/JR20008

    鄧云凱, 禹衛東, 張衡, 等. 未來星載SAR技術發展趨勢. 雷達學報, 2020, 9(1):1 doi: 10.12000/JR20008
    [4] Zhang J, Zhang X, Fan C Q, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance. J Radars, 2016, 5(6): 596

    張杰, 張晰, 范陳清, 等. 極化SAR在海洋探測中的應用與探討. 雷達學報, 2016, 5(6):596
    [5] Wang X S. Status and prospects of radar polarimetry techniques. J Radars, 2016, 5(2): 119 doi: 10.12000/JR16039

    王雪松. 雷達極化技術研究現狀與展望. 雷達學報, 2016, 5(2):119 doi: 10.12000/JR16039
    [6] Liu T, Yang Z Y, Jiang Y N, et al. Review of ship detection in polarimetric synthetic aperture imagery. J Radars, 2021, 10(1): 1 doi: 10.12000/JR20155

    劉濤, 楊子淵, 蔣燕妮, 等. 極化SAR圖像艦船目標檢測研究綜述. 雷達學報, 2021, 10(1):1 doi: 10.12000/JR20155
    [7] Cui X C, Su Y, Chen S W. Polarimetric SAR ship detection based on polarimetric rotation domain features and superpixel technique. J Radars, 2021, 10(1): 35 doi: 10.12000/JR20147

    崔興超, 粟毅, 陳思偉. 融合極化旋轉域特征和超像素技術的極化SAR艦船檢測. 雷達學報, 2021, 10(1):35 doi: 10.12000/JR20147
    [8] Liu T, Yang Z Y, Yang J, et al. CFAR ship detection methods using compact polarimetric SAR in a K-Wishart distribution. IEEE J STARS, 2019, 12(10): 3737
    [9] Pappas O, Achim A, Bull D. Superpixel-level CFAR detectors for ship detection in SAR imagery. IEEE Geosci Remote Sens Lett, 2018, 15(9): 1397 doi: 10.1109/LGRS.2018.2838263
    [10] Gao G. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images. IEEE Geosci Remote Sens Lett, 2011, 8(3): 557 doi: 10.1109/LGRS.2010.2090492
    [11] Huang Y L, Sun L, Guo L, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate. J Radars, 2020, 9(2): 335 doi: 10.12000/JR19082

    黃寅禮, 孫路, 郭亮, 等. 基于空間變跡濾波旁瓣抑制與有序統計恒虛警率的艦船檢測算法. 雷達學報, 2020, 9(2):335 doi: 10.12000/JR19082
    [12] Chen X, Sun J, Yin K Y, et al. An algorithm of ship target detection in SAR images based on cascaded CFAR. Mod Radar, 2012, 34(9): 50 doi: 10.3969/j.issn.1004-7859.2012.09.011

    陳祥, 孫俊, 尹奎英, 等. 基于CFAR級聯的SAR圖像艦船目標檢測算法. 現代雷達, 2012, 34(9):50 doi: 10.3969/j.issn.1004-7859.2012.09.011
    [13] An W T, Xie C H, Yuan X Z. An improved iterative censoring scheme for CFAR ship detection with SAR imagery. IEEE Trans Geosci Remote Sens, 2014, 52(8): 4585 doi: 10.1109/TGRS.2013.2282820
    [14] Weiss M. Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Trans Aerosp Electron Syst, 1982, AES-18(1): 102 doi: 10.1109/TAES.1982.309210
    [15] Novak L M, Burl M C, Irving W W. Optimal polarimetric processing for enhanced target detection. IEEE Trans Aerosp Electron Syst, 1993, 29(1): 234 doi: 10.1109/7.249129
    [16] Goldstein G B. False-alarm regulation in log-normal and weibull clutter. IEEE Trans Aerosp Electron Syst, 1973, AES-9(1): 84 doi: 10.1109/TAES.1973.309705
    [17] Ritcey J A, Du H. Order statistic CFAR detectors for speckled area targets in SAR // Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers. Pacific Grove, 1991: 1082
    [18] Anastassopoulos V, Lampropoulos G A. Optimal CFAR detection in weibull clutter. IEEE Trans Aerosp Electron Syst, 1995, 31(1): 52 doi: 10.1109/7.366292
    [19] Leng X G, Ji K F, Xing X W, et al. Area ratio invariant feature group for ship detection in SAR imagery. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(7): 2376 doi: 10.1109/JSTARS.2018.2820078
    [20] Fan W W, Zhou F, Bai X R, et al. Ship detection using deep convolutional neural networks for PolSAR images. Remote Sens, 2019, 11(23): 2862 doi: 10.3390/rs11232862
    [21] Chang Y L, Anagaw A, Chang L N, et al. Ship detection based on YOLOv2 for SAR imagery. Remote Sens, 2019, 11(7): 786 doi: 10.3390/rs11070786
    [22] Zhang X L, Zhang T W, Shi J, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network. J Radars, 2019, 8(6): 841 doi: 10.12000/JR19111

    張曉玲, 張天文, 師君, 等. 基于深度分離卷積神經網絡的高速高精度SAR艦船檢測. 雷達學報, 2019, 8(6):841 doi: 10.12000/JR19111
    [23] Tian Z Z, Zhan R H, Hu J M, et al. SAR ATR based on convolutional neural network. J Radars, 2016, 5(3): 320 doi: 10.12000/JR16037

    田壯壯, 占榮輝, 胡杰民, 等. 基于卷積神經網絡的SAR圖像目標識別研究. 雷達學報, 2016, 5(3):320 doi: 10.12000/JR16037
    [24] Chen S W, Tao C S, Wang X S, et al. Polarimetric SAR targets detection and classification with deep convolutional neural network // 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). Toyama, 2019: 2227
    [25] Zhou F, Fan W W, Sheng Q Q, et al. Ship detection based on deep convolutional neural networks for polsar images // IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, 2018: 681
    [26] Jin K, Chen Y L, Xu B, et al. A patch-to-pixel convolutional neural network for small ship detection with PolSAR images. IEEE Trans Geosci Remote Sens, 2020, 58(9): 6623 doi: 10.1109/TGRS.2020.2978268
    [27] Zhai L, Li Y, Su Y. Inshore ship detection via saliency and context information in high-resolution SAR images. IEEE Geosci Remote Sens Lett, 2016, 13(12): 1870 doi: 10.1109/LGRS.2016.2616187
    [28] Cui X C, Su Y, Chen S W. A saliency detector for polarimetric SAR ship detection using similarity test. IEEE J Sel Top Appl Earth Obs Remote Sens, 2019, 12(9): 3423 doi: 10.1109/JSTARS.2019.2925833
    [29] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell, 2009, 31(2): 210 doi: 10.1109/TPAMI.2008.79
    [30] Li X H, Lu H C, Zhang L H, et al. Saliency detection via dense and sparse reconstruction // 2013 IEEE International Conference on Computer Vision. Sydney, 2013: 2976
    [31] Lu H C, Li X H, Zhang L H, et al. Dense and sparse reconstruction error based saliency descriptor. IEEE Trans Image Process, 2016, 25(4): 1592 doi: 10.1109/TIP.2016.2524198
    [32] Borji A, Itti L. Exploiting local and global patch rarities for saliency detection // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 478
    [33] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell, 2012, 34(11): 2274 doi: 10.1109/TPAMI.2012.120
    [34] Qin F C, Guo J M, Lang F K. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering. IEEE Geosci Remote Sens Lett, 2015, 12(1): 13 doi: 10.1109/LGRS.2014.2322960
    [35] Li T, Liu Z, Xie R, et al. An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(1): 184 doi: 10.1109/JSTARS.2017.2764506
    [36] Cui X C, Tao C S, Su Y, et al. PolSAR ship detection based on polarimetric correlation pattern. IEEE Geosci Remote Sens Lett, 2021, 18(3): 471 doi: 10.1109/LGRS.2020.2976477
  • 加載中
圖(12) / 表(2)
計量
  • 文章訪問數:  237
  • HTML全文瀏覽量:  49
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-12-28
  • 網絡出版日期:  2023-03-21
  • 刊出日期:  2023-10-25

目錄

    /

    返回文章
    返回