-
摘要: 從礦山地熱致災形式、熱害控制技術、熱能利用方法3個方面,對相關文獻進行歸納,總結已有研究成果。結果表明,礦山地熱的致災形式有加劇煤巖體性質劣化、誘發支護結構失效和導致高溫高濕環境三類,具體包括加劇圍巖變形破壞、誘發吸附瓦斯溢出、降低錨桿錨固強度、加劇錨護材料腐蝕、損害工人身心健康、降低工人工作效率和增加機械設備故障率七方面。熱害控制技術有非人工降溫技術和人工降溫技術兩種,其中非人工降溫技術分為熱源控制技術、熱濕環境調控技術和個體防護技術3類;根據制冷工質不同,可以將人工制冷降溫系統分成氣冷式、冰冷式和水冷式3大類,包括壓縮空氣制冷降溫、冰制冷降溫、地面集中制冷降溫、地面排熱井下集中降溫、回風排熱井下集中降溫、地面熱電聯產制冷降溫和熱害資源化利用等制冷系統。通過提取礦井水和礦井回風中的余熱用于礦區井口防凍、洗浴供暖和建筑物供暖,是目前礦山地熱利用的主要方法。而直接提取巷道圍巖熱能的同時實現礦井降溫是近年來的研究熱點,也是礦山地熱直接利用的關鍵;將地埋管換熱器布置在采空區充填材料或巷道圍巖內提取圍巖熱能、實現礦區多種清潔能源協同利用是未來礦山地熱利用的發展方向之一。Abstract: The gradual increase in mining depth will inevitably lead to several problems because of mine geothermal energy. However, although mine geothermal energy poses dangers such as high temperature and heat hazards, it is also a resource that can be developed and utilized. Based on the existing research results, this paper first summarized the disaster-causing forms of mine geothermal energy. Then, the current prevention and control technologies of mine heat hazards were reviewed. Finally, the main utilization methods of mine geothermal energy were summarized. The findings show that the forms of disasters caused by mine geothermal energy can be classified into three types: aggravating the deterioration of coal and rock mass, inducing the failure of supporting structures, and creating high-temperature and high-humidity environments, including aggravating the deformation and failure of surrounding rock, inducing adsorption gas overflow, reducing the anchor pullout force, aggravating the corrosion of the anchor structure, damaging workers’ physical and mental health, reducing the labor efficiency of workers and machines, and increasing the failure rate of machinery and equipment. Two types of heat hazard control technologies are used: artificial and non-artificial cooling technologies. Non-artificial cooling technology can be divided into three categories: heat source control technology, heat-humidity environment control technology, and individual protection technology. According to various refrigerants, an artificial cooling system can be divided into three categories: air-cooled, ice-cooled, and water-cooled, including compressed air refrigeration cooling systems, ice-cooling systems, ground centralized refrigeration cooling systems, surface heat dissipation, underground centralized refrigeration cooling systems, return air exhaust heating underground centralized refrigeration cooling systems, ground cogeneration refrigeration cooling systems, and resource utilization of heat-harm systems. Extracting waste heat from mine water and mine return air for defreezing of the mine head, bath heating, and building heating is the main method for using mine geothermal energy at present, which can effectively reduce the consumption of primary energy at the same time; thus, it is of great significance for promoting green mining and sustainable development of coal mines. Using a buried tube heat exchanger to extract thermal energy from surrounding rock and realizing the coordinated use of several types of clean energy in a mining area is a future development direction for mine geothermal energy use. By drilling holes in the surrounding rock of a coal mine roadway, the buried pipe heat exchanger is arranged in the surrounding rock of the roadway, and water or organic matter is used as a heat exchange medium. The geothermal energy of roadway surrounding rock is extracted using ground source heat pump technology. In addition, for mining areas with excellent lighting conditions or sufficient wind energy, wind power generation and photovoltaic power generation/heat collection can be used simultaneously, and the produced electric energy and thermal energy can be directly used by users and for water pumps, heat pump units, and so on. The results of this paper provide a reference for mine heat hazard control and resource utilization in our country.
-
圖 9 人工制冷降溫系統的構成 (Tcond: 冷凝溫度; Tevap: 蒸發溫度; Wref: 制冷機功率; Wpump: 水泵功率; Wair: 空冷器功率; ?E: 沿程損失冷量; Qeff : 有效制冷量)
Figure 9. Composition of artificial refrigeration cooling system (Tcond: condensate temperature; Tevap: evaporation temperature; Wref : refrigerator power; Wpump: pump power; Wair: power of air cooler; ?E: cooling loss; Qeff : effective refrigerating capacity)
www.77susu.com -
參考文獻
[1] He M C, Xu M. Research and development of hems cooling system and heat-harm control in deep mine. Chin J Rock Mech Eng, 2008, 27(7): 1353 doi: 10.3321/j.issn:1000-6915.2008.07.007何滿潮, 徐敏. HEMS深井降溫系統研發及熱害控制對策. 巖石力學與工程學報, 2008, 27(7):1353 doi: 10.3321/j.issn:1000-6915.2008.07.007 [2] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001 [3] Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161 doi: 10.13722/j.cnki.jrme.2015.1369謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161 doi: 10.13722/j.cnki.jrme.2015.1369 [4] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1 [5] Jia W M, Ji J H, Zhang M Y, et al. Research and engineering application of high temperature and thermal damage prevention in deep mines. Coal Technol, 2020, 39(3): 88 doi: 10.13301/j.cnki.ct.2020.03.026賈文明, 姬建虎, 張明雨, 等. 深部礦井高溫熱害防治研究與工程應用. 煤炭技術, 2020, 39(3):88 doi: 10.13301/j.cnki.ct.2020.03.026 [6] Liu J X, Li G D, Chang D Q, et al. Present situation and prospect of mine geothermal hazard control technology. Met Mine,http://kns.cnki.net/kcms/detail/34.1055.TD.20211206.1348.002.html柳靜獻, 李國棟, 常德強, 等. 礦井降溫技術研究進展與展望. 金屬礦山,http://kns.cnki.net/kcms/detail/34.1055.TD.20211206.1348.002.html [7] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [8] Wang C F, Lu S Q, Li M J, et al. Study on the dust removal and temperature reduction coupling performances of magnetized water spray. Environ Sci Pollut Res, 2022, 29(4): 6151 doi: 10.1007/s11356-021-16126-0 [9] Chen W, Liang S Q, Liu J. Proposed split-type vapor compression refrigerator for heat hazard control in deep mines. Appl Therm Eng, 2016, 105: 425 doi: 10.1016/j.applthermaleng.2016.03.014 [10] Guo P Y, Qin F. Preventive measures against heat hazard and its utilization in Zhangshuanglou Coal Mine. J China Coal Soc, 2013, 38(Suppl 2): 393郭平業, 秦飛. 張雙樓煤礦深井熱害控制及其資源化利用技術應用. 煤炭學報, 2013, 38(增刊2): 393 [11] Zhang Y L, Liu Y X, Chen X S. Utilization methods of geothermal resources in Jiaodong peninsula mines. Met Mine, 2014(5): 158張永亮, 劉耀香, 陳喜山. 膠東半島礦山地熱資源利用方法. 金屬礦山, 2014(5):158 [12] Zhang Y L, Cai S J, Wu D. Test study on heating system of mining geothermal used in digester. J Central South Univ (Sci Technol) , 2012, 43(8): 3270張永亮, 蔡嗣經, 吳迪. 礦山地熱能沼氣池加溫系統試驗研究. 中南大學學報(自然科學版), 2012, 43(8):3270 [13] Guo P Y, Bu M H, Li Q B, et al. Research progress of accurate measurement and characterization model of effective thermal conductivity of rock. Chin J Rock Mech Eng, 2020, 39(10): 1983 doi: 10.13722/j.cnki.jrme.2020.0337郭平業, 卜墨華, 李清波, 等. 巖石有效熱導率精準測量及表征模型研究進展. 巖石力學與工程學報, 2020, 39(10):1983 doi: 10.13722/j.cnki.jrme.2020.0337 [14] Guo P Y, Bu M H, He M C, et al. Experimental investigation on thermal conductivity of clay-bearing sandstone subjected to different treatment processes: Drying, wetting and drying II. Geothermics, 2020, 88: 101909 doi: 10.1016/j.geothermics.2020.101909 [15] Guo P Y. Characteristics of Geothermal Field of Deep Mine and Its Heat Damage Control in China [Dissertation]. Beijing: China University of Mining & Technology, Beijing, 2010郭平業. 我國深井地溫場特征及熱害控制模式研究[學位論文]. 北京: 中國礦業大學(北京), 2010 [16] Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827 [17] Li J G, Zhang Y B, Zhang J L, et al. Experimental study on temperature effects of uniaxial compression mechanical properties of similar soft rock materials. Chin J Appl Mech, 2019, 36(1): 225李劍光, 張余標, 張金龍, 等. 軟巖相似模擬材料單軸壓縮力學特性的溫度效應試驗研究. 應用力學學報, 2019, 36(1):225 [18] Li J G, Wang Y Y. Experimental analysis of temperature effect in creep of soft rock. J China Coal Soc, 2012, 37(Suppl 1): 81李劍光, 王永巖. 軟巖蠕變的溫度效應及實驗分析. 煤炭學報, 2012, 37(增刊1): 81 [19] Zha W H, Song X L, Wu T F. Experimental study of mechanical characteristics of coal-serial sandy mudstone at different temperatures. Chin J Rock Mech Eng, 2014, 33(4): 809 doi: 10.13722/j.cnki.jrme.2014.04.013查文華, 宋新龍, 武騰飛. 不同溫度條件下煤系砂質泥巖力學特征試驗研究. 巖石力學與工程學報, 2014, 33(4):809 doi: 10.13722/j.cnki.jrme.2014.04.013 [20] Ma Z G, Mao X B, Li Y S, et al. Experimental study on the influence of temperature on mechanical properties of coal. Ground Press Strata Control, 2005, 22(3): 46馬占國, 茅獻彪, 李玉壽, 等. 溫度對煤力學特性影響的實驗研究. 礦山壓力與頂板管理, 2005, 22(3):46 [21] He M C, Guo P Y. Deep Rock Thermodynamics and Thermal Control Technology. Beijing: Science Press, 2017何滿潮, 郭平業. 深部巖石熱力學及熱控技術. 北京: 科學出版社, 2017 [22] Ferrero A M, Marini P. Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mech Rock Engng, 2001, 34(1): 57 doi: 10.1007/s006030170026 [23] He M C, Wang C G, Li D J, et al. Desorption characteristics of adsorbed gas in coal samples under coupling temperature and uniaxial compression. Chin J Rock Mech Eng, 2010, 29(5): 865何滿潮, 王春光, 李德建, 等. 單軸應力?溫度作用下煤中吸附瓦斯解吸特征. 巖石力學與工程學報, 2010, 29(5):865 [24] Wang Z F, Tang X, Yue G W, et al. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273. 15 K. Fuel, 2015, 158: 207 doi: 10.1016/j.fuel.2015.05.011 [25] Wang C G, He M C, Zhang X H, et al. Temperature influence on macro-mechanics parameter of intact coal sample containing original gas from Baijiao Coal Mine in China. Int J Min Sci Technol, 2013, 23(4): 597 doi: 10.1016/j.ijmst.2013.07.020 [26] Li Z X, Jia J Z, Zhou Z L. Numerical simulation of the change process of field variables distribution in goaf caused by air reversing in working faces. J Univ Sci Technol Beijing, 2010, 32(6): 691 doi: 10.13374/j.issn1001-053x.2010.06.001李宗翔, 賈進章, 周志林. 工作面反風時采空區場量分布變動的數值模擬. 北京科技大學學報, 2010, 32(6):691 doi: 10.13374/j.issn1001-053x.2010.06.001 [27] Xu J, Yang X B, Zhou B, et al. Study of evolution law of gas pressure and temperature in coal seam during outburst. J China Univ Min Technol, 2019, 48(6): 1177 doi: 10.13247/j.cnki.jcumt.001073許江, 楊孝波, 周斌, 等. 突出過程中煤層瓦斯壓力與溫度演化規律研究. 中國礦業大學學報, 2019, 48(6):1177 doi: 10.13247/j.cnki.jcumt.001073 [28] Zhang Z G, Zhao D, Zhang C H, et al. Isothermal adsorption/desorption characteristics of soft coal at different temperatures. J Liaoning Tech Univ (Nat Sci) , 2021, 40(6): 510 doi: 10.11956/j.issn.1008-0562.2021.06.005張遵國, 趙丹, 張春華, 等. 不同溫度下軟煤等溫吸附/解吸特性. 遼寧工程技術大學學報(自然科學版), 2021, 40(6):510 doi: 10.11956/j.issn.1008-0562.2021.06.005 [29] Yang Y L. Experimental study on coal adsorption characteristics under different temperature and pressure. Coal Technol, 2016, 35(8): 171楊銀磊. 不同溫壓條件下煤瓦斯吸附特性的試驗研究. 煤炭技術, 2016, 35(8):171 [30] Nie B S, He X Q, Zhang C, et al. Temperature measurement of gas explosion flame based on the radiation thermometry. Int J Therm Sci, 2014, 78: 132 doi: 10.1016/j.ijthermalsci.2013.12.010 [31] He X, Li S Q, Duan Z P. Study on gas adsorption characteristics of coal sample under different temperatures and pressures. Min Res Dev, 2018, 38(12): 84 doi: 10.13827/j.cnki.kyyk.2018.12.018何鑫, 李紹泉, 段正鵬. 不同溫度和壓力條件下煤樣對瓦斯的吸附特性研究. 礦業研究與開發, 2018, 38(12):84 doi: 10.13827/j.cnki.kyyk.2018.12.018 [32] Zhang Q, Zhang W Q. Research status and prospect of influencing factors on coal gas adsorption. Inn Mong Coal Econ, 2020(17): 27 doi: 10.3969/j.issn.1008-0155.2020.17.014張潛, 張文清. 煤對瓦斯吸附的影響因素的研究現狀與前景展望. 內蒙古煤炭經濟, 2020(17):27 doi: 10.3969/j.issn.1008-0155.2020.17.014 [33] Hu B, Kang H P, Lin J, et al. Study on influence of temperature on anchorage performance of resin anchored bolt. J Min Saf Eng, 2012, 29(5): 644胡濱, 康紅普, 林健, 等. 溫度對樹脂錨桿錨固性能影響研究. 采礦與安全工程學報, 2012, 29(5):644 [34] Wang J Y, Guo J M, Mi J F, et al. Influence of the temperature on the gel time of the capsules in rock bolting system. J China Coal Soc, 2008, 33(6): 619 doi: 10.3321/j.issn:0253-9993.2008.06.005王繼勇, 郭建明, 秘潔芳, 等. 溫度對樹脂錨桿錨固劑凝膠時間的影響. 煤炭學報, 2008, 33(6):619 doi: 10.3321/j.issn:0253-9993.2008.06.005 [35] Zhang S, Gou P F, Fan H. Influence of water and temperature on resin anchor-hold. J Southeast Univ (Nat Sci Ed), 2005, 35(Suppl 1): 49張盛, 勾攀峰, 樊鴻. 水和溫度對樹脂錨桿錨固力的影響. 東南大學學報(自然科學版), 2005, 35(增刊1): 49 [36] Kang H P, Cui Q L, Hu B, et al. Analysis on anchorage performances and affecting factors of resin bolts. J China Coal Soc, 2014, 39(1): 1康紅普, 崔千里, 胡濱, 等. 樹脂錨桿錨固性能及影響因素分析. 煤炭學報, 2014, 39(1):1 [37] Kang C H. Study on the Influence of Temperature on the Mechanical Properties of Resin Anchor [Dissertation]. Huainan: Anhui University of Science & Technology, 2017康長豪. 溫度對樹脂錨桿錨固性能力學特性影響研究[學位論文]. 淮南: 安徽理工大學, 2017 [38] Chen Y. Mechanical Analysis on Anchorage Performance of Resin Anchored Bolt [Dissertation]. Xuzhou: China University of Mining and Technology, 2014陳瑤. 樹脂錨桿錨固性能的力學分析[學位論文]. 徐州: 中國礦業大學, 2014 [39] Wang T L. Research on Mechanic Properties of Anchoring Materials Based on Thermodynamic Coupling Effect [Dissertation]. Huainan: Anhui University of Science & Technology, 2013王天亮. 基于熱力耦合效應的錨固材料力學特性研究[學位論文]. 淮南: 安徽理工大學, 2013 [40] Liu X H, Yao Z S, Xue W P, et al. Experimental study of the failure mechanism of the anchorage interface under different surrounding rock strengths and ambient temperatures. Adv Civ Eng, 2021, 2021: 6622418 [41] Kang H, Wu Y, Gao F, et al. Fracture characteristics in rock bolts in underground coal mine roadways. Int J Rock Mech Min Sci, 2013, 62: 105 doi: 10.1016/j.ijrmms.2013.04.006 [42] Kang H P. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China. J China Univ Min Technol, 2016, 45(6): 1071 doi: 10.13247/j.cnki.jcumt.000583康紅普. 我國煤礦巷道錨桿支護技術發展60年及展望. 中國礦業大學學報, 2016, 45(6):1071 doi: 10.13247/j.cnki.jcumt.000583 [43] Craig P, Serkan S, Hagan P, et al. Investigations into the corrosive environments contributing to premature failure of Australian coal mine rock bolts. Int J Min Sci Technol, 2016, 26(1): 59 doi: 10.1016/j.ijmst.2015.11.011 [44] Divi S, Chandra D, Daemen J. Corrosion susceptibility of potential rock bolts in aerated multi-ionic simulated concentrated water. Tunn Undergr Space Technol, 2011, 26(1): 124 doi: 10.1016/j.tust.2010.07.003 [45] Yilmaz A, Rebak R B, Chandra D. Corrosion behavior of carbon steel rock bolt in simulated Yucca Mountain ground waters. Metall Mater Trans A, 2005, 36(5): 1097 doi: 10.1007/s11661-005-0203-3 [46] Zuo Q M, Cheng W M, Miao D J, et al. Fuzzy comprehensive evaluation of thermal environment in high-temperature mine based on the influence of thermal damage on human beings. Saf Coal Mines, 2009, 40(7): 86 doi: 10.13347/j.cnki.mkaq.2009.07.023左前明, 程衛民, 苗德俊, 等. 基于熱害對人影響的高溫礦井熱環境模糊綜合評價. 煤礦安全, 2009, 40(7):86 doi: 10.13347/j.cnki.mkaq.2009.07.023 [47] Cui W G. Effect of Heat Stress in Deep Mine on Physiological and Biochemical Indexes of Miners [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2008崔文廣. 深井熱害對礦工生理和生化指標的影響[學位論文]. 武漢: 華中科技大學, 2008 [48] Zhuang Y. Influence of high temperature of deep shaft on miner healthy and control measure. Saf Coal Mines, 2014, 45(10): 214莊嚴. 深井高溫對礦工健康的影響及防治措施. 煤礦安全, 2014, 45(10):214 [49] Donoghue A M. Occupational health hazards in mining: An overview. Occup Med (Lond) , 2004, 54(5): 283 doi: 10.1093/occmed/kqh072 [50] Zhu N, Zhao J. Research on heat tolerance of extreme thermal environment in hyperthermal coal mine. Build Energy Environ, 2006, 25(5): 34 doi: 10.3969/j.issn.1003-0344.2006.05.008朱能, 趙靖. 高熱害煤礦極端環境條件下人體耐受力研究. 建筑熱能通風空調, 2006, 25(5):34 doi: 10.3969/j.issn.1003-0344.2006.05.008 [51] Maurya T, Karena K, Vardhan H, et al. Effect of heat on underground mine workers. Procedia Earth Planet Sci, 2015, 11: 491 doi: 10.1016/j.proeps.2015.06.049 [52] Friedman L S, Almberg K S, Cohen R A. Injuries associated with long working hours among employees in the US mining industry: risk factors and adverse outcomes. Occup Environ Med, 2019, 76: 389 doi: 10.1136/oemed-2018-105558 [53] Zhao Y H. Mine Ventilation and Air Conditioning. Xuzhou: China University of Mining & Technology Press, 1990趙以蕙. 礦井通風與空氣調節. 徐州: 中國礦業大學出版社, 1990 [54] Zhang X J, Wang C Y, Ji J H. Mine heat damage control technology and its development status. Saf Coal Mines, 2009, 40(3): 33 doi: 10.13347/j.cnki.mkaq.2009.03.020張習軍, 王長元, 姬建虎. 礦井熱害治理技術及其發展現狀. 煤礦安全, 2009, 40(3):33 doi: 10.13347/j.cnki.mkaq.2009.03.020 [55] Luo Y D, Wang H N, Zhang Y B. Research and application of cooling technology in roadway driving in the mine at high temperature. Nonferrous Met Sci Eng, 2020, 11(1): 85 doi: 10.13264/j.cnki.ysjskx.2020.01.014羅勇東, 王海寧, 張迎賓. 礦井高溫掘進巷道降溫技術研究及應用. 有色金屬科學與工程, 2020, 11(1):85 doi: 10.13264/j.cnki.ysjskx.2020.01.014 [56] Wang J H, Wan Z J, Zhang H W, et al. Application of thermal insulation gunite material to the high geo-temperature roadway. Adv Civ Eng, 2020, 2020: 8853870 [57] Zou S H, Li K Q, Zhang D C, et al. On the air-partition for cooling with the heatinsulated plate. J Saf Environ, 2016, 16(2): 99 doi: 10.13637/j.issn.1009-6094.2016.02.020鄒聲華, 李孔清, 張登春, 等. 掘進巷道隔熱分流排熱降溫技術的理論與實踐研究. 安全與環境學報, 2016, 16(2):99 doi: 10.13637/j.issn.1009-6094.2016.02.020 [58] Wang K P, Li Q M, Wang J, et al. Thermodynamic characteristics of deep space: Hot hazard control case study in 1010-m-deep mine. Case Stud Therm Eng, 2021, 28: 101656 doi: 10.1016/j.csite.2021.101656 [59] Chai H L, Wang J X, Wang J G, et al. The heat source analysis and the research and development on air-cooling in deep mines. Met Mine, 2014(5): 151柴會來, 王建學, 王景剛, 等. 礦井熱源分析及降溫技術研究和發展. 金屬礦山, 2014(5):151 [60] Chen J. Current research status of heat damage treatment and geothermal energy utilization in deep well. Shanxi Coking Coal Sci Technol, 2019, 43(8): 4 doi: 10.3969/j.issn.1672-0652.2019.08.002陳軍. 深井熱害治理及地熱能利用研究現狀. 山西焦煤科技, 2019, 43(8):4 doi: 10.3969/j.issn.1672-0652.2019.08.002 [61] Gao Z P. Mine cooling technology research situation and prospect. Appl Energy Technol, 2014(11): 38 doi: 10.3969/j.issn.1009-3230.2014.11.011高志鵬. 礦井降溫技術研究現狀及展望. 應用能源技術, 2014(11):38 doi: 10.3969/j.issn.1009-3230.2014.11.011 [62] Wang S Q, Wang M. Causes and study progress of governance methods of the heat hazard of deep coal mine in China. Mod Min, 2018, 34(5): 18 doi: 10.3969/j.issn.1674-6082.2018.05.004王詩祺, 王美. 我國煤礦深井熱害成因及治理方法研究進展. 現代礦業, 2018, 34(5):18 doi: 10.3969/j.issn.1674-6082.2018.05.004 [63] Yan R L, Hou X W, Huang G G, et al. Mine Air Conditioning Technology. Beijing: China Coal Industry Publishing House, 1994嚴榮林, 侯賢文, 黃國綱, 等. 礦井空調技術. 北京: 煤炭工業出版社, 1994 [64] Xiong Y X, Qian X Y, Cheng L, et al. Application and analysis of refrigeration technology in high temperature mine. Gas Heat, 2021, 41(7): 13 doi: 10.13608/j.cnki.1000-4416.2021.07.004熊亞選, 錢向瑤, 程磊, 等. 高溫礦井制冷降溫技術應用與分析. 煤氣與熱力, 2021, 41(7):13 doi: 10.13608/j.cnki.1000-4416.2021.07.004 [65] He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures. Chin J Rock Mech Eng, 2013, 32(12): 2377何滿潮, 郭平業. 深部巖體熱力學效應及溫控對策. 巖石力學與工程學報, 2013, 32(12):2377 [66] Li C, Hu C S. Application of compressed air cooling technology in coal mine driving face. Min Saf Environ Prot, 2012, 39(6): 70 doi: 10.3969/j.issn.1008-4495.2012.06.022李春, 胡春勝. 壓縮空氣降溫技術在煤礦掘進工作面的應用. 礦業安全與環保, 2012, 39(6):70 doi: 10.3969/j.issn.1008-4495.2012.06.022 [67] Lan G Z. Discussion on cooling measures during well construction in Bangladesh Bashi Mine. Coal Sci Tech, 2001(4): 13蘭貴枝. 孟加拉國巴礦建井期間降溫措施的探討. 煤炭科技, 2001(4):13 [68] Qi Y D, Wang M H. EER test and analysis of surface ice cooling system for coal mine. Int J Low-Carbon Tech, 2020, 15(3): 382 doi: 10.1093/ijlct/ctaa008 [69] Li X, Fu H L. Development of an efficient cooling strategy in the heading face of underground mines. Energies, 2020, 13(5): 1116 doi: 10.3390/en13051116 [70] Jian C G, Wei X J, Le J. Economic operation analysis of ice cooling system. Min Saf Environ Prot, 2008, 35(4): 33菅從光, 衛修君, 樂俊. 冰制冷降溫系統經濟性運行分析. 礦業安全與環保, 2008, 35(4):33 [71] Qi Y D, Cheng W M, Pan G, et al. Measurement and analysis on COP of pre-cooling units of ice-cooling system for coal mine. Min Saf Environ Prot, 2014, 41(2): 111亓玉棟, 程衛民, 潘剛, 等. 礦井冰制冷降溫系統預冷機組能效測試與分析. 礦業安全與環保, 2014, 41(2):111 [72] Miao D J, Sui X H, Xiao L J. Bionic design and finite element analysis of elbow in ice transportation cooling system. J Bionic Eng, 2010, 7(3): 301 doi: 10.1016/S1672-6529(10)60254-5 [73] Jin C. Evaluation and System Optimization of Cooling Effects of 111304 Workface in Kou zi Dong Coal Mine [Dissertation]. Huainan: Anhui University of Science & Technology, 2015金超. 口孜東礦111304工作面降溫效果評價及系統優化[學位論文]. 淮南: 安徽理工大學, 2015 [74] Guo P F. Research on Cooling Technology of 1221(1) Working Face in Panyi Dong Coal Mine [Dissertation]. Huainan: Anhui University of Science & Technology, 2017郭鵬飛. 潘一東礦1221(1)工作面降溫工程技術研究[學位論文]. 淮南: 安徽理工大學, 2017 [75] Yan L. Ground central cooling system in Jining Coal mine applications. Shandong Coal Sci Technol, 2017(1): 98 doi: 10.3969/j.issn.1005-2801.2017.01.043鄢利. 地面集中降溫系統在濟三煤礦的應用. 山東煤炭科技, 2017(1):98 doi: 10.3969/j.issn.1005-2801.2017.01.043 [76] Zhang Y C. Research on treatment technology and cooling effect of thermal damage in Zhuji coal mine. Saf Coal Mines, 2015, 46(10): 157 doi: 10.13347/j.cnki.mkaq.2015.10.046張永春. 朱集礦熱害治理技術與降溫效果研究. 煤礦安全, 2015, 46(10):157 doi: 10.13347/j.cnki.mkaq.2015.10.046 [77] Yang D D. Research on Feature of Thermal Disaster and the Control Effect in Zhuji Coal Mine [Dissertation]. Huainan: Anhui University of Science & Technology, 2013楊丁丁. 朱集礦熱害特征及其控制效果研究[學位論文]. 淮南: 安徽理工大學, 2013 [78] Jiang Z J. Application of air retuning refrigeration station in underground mine to mine temperature cooling project. Coal Eng, 2013, 45(1): 19蔣正君. 井下回風冷卻站在礦井降溫工程中的應用. 煤炭工程, 2013, 45(1):19 [79] Liu G P, Huang Z W. Technology of removing condensation heat of refrigerator by mine return air. Zhongzhou Coal, 1999(2): 21劉貴平, 黃宗文. 利用礦井回風排除制冷機冷凝熱技術. 中州煤炭, 1999(2):21 [80] Xu G C, Wang W Q, Chen J. Design of mine cooling system in pinger coal mine. Coal Eng, 2013, 45(Suppl 2): 51徐廣才, 王文全, 陳炬. 平煤二礦礦井降溫系統設計. 煤炭工程, 2013, 45(增刊2): 51 [81] Yan M Q. Research and application of underground centralized cooling technology in Yangcheng coal mine. Coal Mine Mach, 2018, 39(2): 120嚴明慶. 陽城煤礦井下集中制冷降溫技術研究及應用. 煤礦機械, 2018, 39(2):120 [82] Wang L B. Study on the application of medium refrigeration and cooling technology in the treatment of thermal damage in Yangcheng coal mine. Mod Ind Econ Informationization, 2018, 8(9): 85王來彬. 集中制冷降溫技術在陽城煤礦熱害治理中的應用研究. 現代工業經濟和信息化, 2018, 8(9):85 [83] He M C. Application of HEMS cooling technology in deep mine heat hazard control. Min Sci Technol (China) , 2009, 19(3): 269 doi: 10.1016/S1674-5264(09)60051-X [84] He M C, Guo P Y, Chen X Q, et al. Research on characteristics of high-temperature and control of heat-harm of sanhejian coal mine. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 2593何滿潮, 郭平業, 陳學謙, 等. 三河尖礦深井高溫體特征及其熱害控制方法. 巖石力學與工程學報, 2010, 29(增刊1): 2593 [85] Han Q Y, Zhang Y, Li K Q, et al. Computational evaluation of cooling system under deep hot and humid coal mine in China: A thermal comfort study. Tunn Undergr Space Technol, 2019, 90: 394 doi: 10.1016/j.tust.2019.05.010 [86] Zhang Y, Guo D M, Tian J. Energy consumption analysis of cooling system in Jiahe deep coal mine. Appl Mech Mater, 2011, 117-119: 1784 doi: 10.4028/www.scientific.net/AMM.117-119.1784 [87] Guo P Y, Zhu Y Y. Back-analysis algorithm of cooling load in deep mines. J Min Saf Eng, 2011, 28(3): 483 doi: 10.3969/j.issn.1673-3363.2011.03.028郭平業, 朱艷艷. 深井降溫冷負荷反分析計算方法. 采礦與安全工程學報, 2011, 28(3):483 doi: 10.3969/j.issn.1673-3363.2011.03.028 [88] Yuan L, Jiang Y D, Wang K, et al. Precision exploitation and utilization of closed/abandoned mine resources in China. J China Coal Soc, 2018, 43(1): 14 doi: 10.13225/j.cnki.jccs.2017.1803袁亮, 姜耀東, 王凱, 等. 我國關閉/廢棄礦井資源精準開發利用的科學思考. 煤炭學報, 2018, 43(1):14 doi: 10.13225/j.cnki.jccs.2017.1803 [89] Ramos E P, Breede K, Falcone G. Geothermal heat recovery from abandoned mines: A systematic review of projects implemented worldwide and a methodology for screening new projects. Environ Earth Sci, 2015, 73(11): 6783 doi: 10.1007/s12665-015-4285-y [90] Guo P Y, He M C, Zheng L G, et al. A geothermal recycling system for cooling and heating in deep mines. Appl Therm Eng, 2017, 116: 833 doi: 10.1016/j.applthermaleng.2017.01.116 [91] Jardón S, Ordó?ez A, álvarez R, et al. Mine water for energy and water supply in the central coal basin of Asturias (Spain). Mine Water Environ, 2013, 32(2): 139 doi: 10.1007/s10230-013-0224-x [92] Guo P Y, Zhu G L, He M C. HEMS technique for heat-harm control and geo-thermal utilization in deep mines. Int J Coal Sci Technol, 2014, 1(3): 289 doi: 10.1007/s40789-014-0036-z [93] Du H, Dou Y, Qi C. Application of mine water for water-source heat pump system. Appl Mech Mater, 2013, 291-294: 1701 doi: 10.4028/www.scientific.net/AMM.291-294.1701 [94] Xin S, Zhang J S, Qi X F, et al. Research of mine water heat recycling technology. Coal Technol, 2015, 34(10): 304 doi: 10.13301/j.cnki.ct.2015.10.116辛嵩, 張建樹, 齊曉峰, 等. 礦井水熱能回收利用技術研究. 煤炭技術, 2015, 34(10):304 doi: 10.13301/j.cnki.ct.2015.10.116 [95] Tian W, Zheng Y, Shan S L, et al. Desalination technology of well water in high-temperature salt mine and comprehensive utilization of heat energy resources. Shandong Coal Sci Technol, 2011(4): 38 doi: 10.3969/j.issn.1005-2801.2011.04.028田偉, 鄭音, 單紹磊, 等. 高溫高鹽礦井水除鹽工藝及熱能資源的綜合利用. 山東煤炭科技, 2011(4):38 doi: 10.3969/j.issn.1005-2801.2011.04.028 [96] Zhao Z Z, Ma N, Wei W, et al. Primary alysis on water resource heat pump application technology in mine system—Setting liangbaosi coal mine in Jining City as an example. Shandong Land Resour, 2013, 29(6): 61 doi: 10.3969/j.issn.1672-6979.2013.06.015趙志釗, 馬寧, 魏巍, 等. 礦井系統中水源熱泵應用技術探析—以山東省濟寧梁寶寺煤礦為例. 山東國土資源, 2013, 29(6):61 doi: 10.3969/j.issn.1672-6979.2013.06.015 [97] Li K R. Mine water waste heat utilization in Tangjiahui Coal Mine. Coal Eng, 2020, 52(Suppl 1): 24李科燃. 唐家會礦礦井水余熱利用技術研究及應用. 煤炭工程, 2020, 52(增刊1): 24 [98] Liu J Z. Feasibility study on thermal energy utilization of Ordovician limestone water in Pan Ⅱ Coal Mine. Energy Environ Prot, 2020, 34(1): 73劉家柱. 潘二礦礦井奧灰水熱能利用可行性研究. 能源環境保護, 2020, 34(1):73 [99] He M C, Cao X L, Xie Q, et al. Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards. Min Sci Technol (China) , 2010, 20(1): 20 doi: 10.1016/S1674-5264(09)60155-1 [100] Xu K, Wei J S, Du X L, et al. Heat pump heating scheme with low-grade waste heat in Liudian mine. Saf Coal Mines, 2014, 45(6): 177徐坤, 魏京勝, 杜曉麗, 等. 劉店煤礦余熱資源熱泵供熱方案. 煤礦安全, 2014, 45(6):177 [101] Bi S K, Wan Z J, Zhang H W, et al. Research on development and utilization of geothermal resources in Tangkou Coal Mine. Coal Sci Technol, 2018, 46(4): 208畢世科, 萬志軍, 張洪偉, 等. 唐口煤礦地熱資源開發及利用研究. 煤炭科學技術, 2018, 46(4):208 [102] Wang J G, She J, Wang J X, et al. Numerical simulation of mine return air exchanger. Refrig Air Cond, 2013, 13(3): 37王景剛, 佘軍, 王建學, 等. 礦井回風換熱器數值模擬. 制冷與空調, 2013, 13(3):37 [103] Xiong H L, Liu H Q, Li Y J, et al. Design of air thermal recovery experiment device and analysis of thermal efficiency. Procedia Eng, 2015, 121: 1567 doi: 10.1016/j.proeng.2015.09.179 [104] Tang L L. Design and Performance Analysis of Mine Return Air Source Heat Pump System [Dissertation]. Hefei: Hefei University of Technology, 2016湯玲玲. 礦井回風源熱泵系統的設計與性能分析[學位論文]. 合肥: 合肥工業大學, 2016 [105] Xin S, Zhang Z P. Research on separate-type heat pipe recovery technology of mine return air waste heat. Min Res Dev, 2020, 40(11): 160 doi: 10.13827/j.cnki.kyyk.2020.11.028辛嵩, 張兆鵬. 礦井回風余熱分離式熱管回收技術研究. 礦業研究與開發, 2020, 40(11):160 doi: 10.13827/j.cnki.kyyk.2020.11.028 [106] Xiang Y L, Yang Y, Yan W R, et al. Current status and prospect of waste heat utilization technologies of return air in coal mines. Coal Qual Technol, 2021, 36(6): 77向艷蕾, 楊允, 閆文瑞, 等. 煤礦回風余熱資源利用技術現狀與展望. 煤質技術, 2021, 36(6):77 [107] Cao L. Practice and Application of Mine Waste Heat Recovery and Reuse Technology in Liangshuijing Coal Min [Dissertation]. Xi'an: Xi'an University of Science and Technology, 2020曹龍. 礦井余熱回收再利用技術在涼水井煤礦的實踐與應用[學位論文]. 西安: 西安科技大學, 2020 [108] Wang K H, Zhao D X, Luo J H, et al. Design and application of heat pipe self-balanced ventilation thermal energy system. Min Saf Environ Prot, 2021, 48(2): 92王侃宏, 趙東雪, 羅景輝, 等. 熱管式礦井通風熱能自平衡系統設計與應用. 礦業安全與環保, 2021, 48(2):92 [109] Li Z J, Xu Y, Jia M T, et al. Numerical simulation on heat hazard control by collaborative geothermal exploitation in deep mine. J Central South Univ (Sci Technol) , 2021, 52(3): 671 doi: 10.11817/j.issn.1672-7207.2021.03.002李孜軍, 徐宇, 賈敏濤, 等. 深部礦井巖層地熱能協同開采治理熱害數值模擬. 中南大學學報(自然科學版), 2021, 52(3):671 doi: 10.11817/j.issn.1672-7207.2021.03.002 [110] Amiri L, Madadian E, Hassani F P. Energo- and exergo-technical assessment of ground-source heat pump systems for geothermal energy production from underground mines. Environ Technol, 2019, 40(27): 3534 doi: 10.1080/09593330.2018.1481886 [111] Liu Z J, Li Y W, Xu W, et al. Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case. Energy, 2019, 173: 28 doi: 10.1016/j.energy.2019.02.061 [112] Liu L, Xin J, Zhang B, et al. Basic theories and applied exploration of functional backfill in mines. J China Coal Soc, 2018, 43(7): 1811 doi: 10.13225/j.cnki.jccs.2017.1626劉浪, 辛杰, 張波, 等. 礦山功能性充填基礎理論與應用探索. 煤炭學報, 2018, 43(7):1811 doi: 10.13225/j.cnki.jccs.2017.1626 [113] Zhang X Y, Wen D, Zhao Y J, et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine. J China Coal Soc, 2021, 46(10): 3158 doi: 10.13225/j.cnki.jccs.2020.1457張小艷, 文德, 趙玉嬌, 等. 礦山蓄熱/儲能充填體的熱-力性能與傳熱過程. 煤炭學報, 2021, 46(10):3158 doi: 10.13225/j.cnki.jccs.2020.1457 [114] Li B Y. Thermal Energy Storage Mechanism and Method in Underground Energy-Stored Functional Backfilled Stopes [Dissertation]. Xuzhou: China University of Mining and Technology, 2020李百宜. 煤礦儲能式充填空間熱能存取機理及方法研究[學位論文]. 徐州: 中國礦業大學, 2020 [115] Li B Y, Zhang J X, Ghoreishi-Madiseh S A, et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines. J Clean Prod, 2020, 275: 122647 doi: 10.1016/j.jclepro.2020.122647 [116] Ghoreishi-Madiseh S A, Hassani F, Abbasy F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes. Appl Therm Eng, 2015, 90: 1119 doi: 10.1016/j.applthermaleng.2014.11.023 -